# TA-Differential equation

## Differential Equation

- 1. Physical laws  $\rightarrow$  Relationships between rates of change (Newton's laws, circuit laws, etc.)
- 2. Equations for rates of change = differential equations
- 3. Solve differential equations = to predict the future of a system (position, voltage, temperature, probability, etc.)

## First order Differential equation

#### Seperable equation

For the equation with the form

$$\int f(y)y'dx = \int g(x)dx$$
  $\int f(y)dy = \int f(y)rac{dy}{dx}dx$   $rac{dy}{dx} = xy$ 

Solution

$$rac{1}{y}dy=xdx \ \int rac{1}{y}dy=\int xdx \ \ln|y|=rac{x^2}{2}+C$$

The general solution to the equation

$$y=Ce^{x^2/2}$$

#### Homogeneous

The first order homogeneous equation have the form

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

Usually, the equation is simplified by introducing the variable substitution  $v = \frac{y}{x}$ , after which it is transformed into a method that can separate variables to solve.

Example

$$\frac{dy}{dx} = \frac{x+y}{x}$$

Solution

$$\frac{dy}{dx} = 1 + \frac{y}{x}$$

Set 
$$v=rac{y}{x}$$
, then  $y=vx$ , so  $rac{dy}{dx}=v+xrac{dv}{dx}$ .

$$v + x \frac{dv}{dx} = 1 + v$$
 $x \frac{dv}{dx} = 1$ 

Separate variables and integrate

$$\int dv = \int \frac{1}{x} dx$$

$$v = \ln|x| + C$$

$$\frac{y}{x} = \ln|x| + C$$

$$y = x(\ln|x| + C)$$

First-order linear differential equation

$$y' + p(x)y = q(x)$$

we have a general solution

$$y=e^{-\int p(x)dx}\left[\int q(x)e^{\int p(x)dx}dx+C
ight]$$

Example : Kirhooff Rules

Circuit: Resistor R in series with capacitor C, connected to a constant voltage source  $V_0$ . According to Kirchhoff's laws:

$$V_0 = V_R + V_C = R rac{dq}{dt} + rac{q}{C}$$

Where is the charge on the capacitor. Equation from Kirchhoff's law (charge on the capacitor):

$$rac{dq}{dt} + rac{1}{RC_{
m cap}}q = rac{V_0}{R}.$$

Here  $p(t) = rac{1}{RC_{ ext{cap}}}$  and  $q(t) = rac{V_0}{R}$ .

Integrating factor:

$$\mu(t) = \exp\left(\int rac{1}{RC_{ ext{cap}}} dt
ight) = e^{t/(RC_{ ext{cap}})}$$

Using the general formula:

$$q(t) = rac{1}{\mu(t)}igg(\int \mu(t)rac{V_0}{R}dt + C_1igg) = e^{-t/(RC_{ ext{cap}})}\left(rac{V_0}{R}\int e^{t/(RC_{ ext{cap}})}dt + C_1
ight).$$

Compute the integral:

$$\int e^{t/(RC_{ ext{cap}})}dt = RC_{ ext{cap}}\,e^{t/(RC_{ ext{cap}})}$$

So

$$q(t) = e^{-t/(RC_{ ext{cap}})} \left( rac{V_0}{R} R C_{ ext{cap}} \, e^{t/(RC_{ ext{cap}})} + C_1 
ight) = V_0 C_{ ext{cap}} \, + C_1 e^{-t/(RC_{ ext{cap}})}.$$

Equation from Kirchhoff's law (charge q(t) on the capacitor):

$$rac{dq}{dt} + rac{1}{RC_{
m can}}q = rac{V_0}{R}.$$

$$\mu(t) = \exp\left(\int rac{1}{RC_{ ext{cap}}} dt
ight) = e^{t/(RC_{ ext{cap}})}$$

Using the general formula:

$$q(t) = rac{1}{\mu(t)}igg(\int \mu(t)rac{V_0}{R}dt + C_1igg) = e^{-t/(RC_{ ext{cap}})}\left(rac{V_0}{R}\int e^{t/(RC_{ ext{cap}})}dt + C_1
ight).$$

Compute the integral:

$$\int e^{t/(RC_{ ext{cap}})}dt = RC_{ ext{cap}}\,e^{t/(RC_{ ext{cap}})}$$

So

$$q(t) = e^{-t/(RC_{ ext{cap}})} \left( rac{V_0}{R} R C_{ ext{cap}} \, e^{t/(RC_{ ext{cap}})} + C_1 
ight) = V_0 C_{ ext{cap}} \, + C_1 e^{-t/(RC_{ ext{cap}})}.$$

Define the time constant  $au=RC_{ ext{cap}}$  . With initial condition  $q(0)=q_0$  ,

$$q_0 = V_0 C_{ ext{cap}} + C_1 \Rightarrow C_1 = q_0 - V_0 C_{ ext{cap}}$$
.

#### Bernoulli's Equation

With the equation have the form

$$y' + p(x)y = q(x)y^n$$

convert to

$$y^{-n}rac{dy}{dx}+p(x)y^{1-n}=q(x)$$

Let

$$v=y^{1-n}, \quad \Rightarrow \quad rac{dv}{dx}=(1-n)y^{-n}rac{dy}{dx}$$

Substitute into the equation:

$$\frac{1}{1-n}\frac{dv}{dx} + P(x)v = Q(x)$$

Or, equivalently:

$$\frac{dv}{dx} + (1-n)P(x)v = (1-n)Q(x)$$

which is a first-order linear equation.

Example

$$\frac{dy}{dx} + y = y^2$$

Here, 
$$P(x) = 1$$
,  $Q(x) = 1$ , and  $n = 2$ .

1. Rewrite the equation in standard form

$$\frac{dy}{dx} + y = y^2$$

2. Substitute  $v = y^{1-2} = y^{-1}$ .

$$rac{dv}{dx} = -y^{-2}rac{dy}{dx}$$

3. The original equation:

$$rac{dy}{dx} + y = y^2 \Rightarrow rac{dy}{dx} = y^2 - y$$

Substitute:

$$\frac{dv}{dx} = -y^{-2}(y^2 - y) = -(1 - y^{-1}) = v - 1 \implies \frac{dv}{dx} - v = -1$$

4. This is a linear equation. The integrating factor is:

$$\mu(x) = e^{-\int 1 dx} = e^{-x}$$

5. Solution:

$$\frac{d}{dx}(ve^{-x}) = -e^{-x}$$

Integrate:

$$ve^{-x} = \int -e^{-x}dx = e^{-x} + C$$
 $v = 1 + Ce^x$ 

6. Substitute back  $v = y^{-1}$ :

$$rac{1}{y}=1+Ce^x \implies y(x)=rac{1}{1+Ce^x}$$

#### second order

A second-order linear differential equation has the general form:

$$a(x)y'' + b(x)y' + c(x)y = g(x)$$

- If g(x) = 0, the equation is called a homogeneous second-order differential equation.
- If  $g(x) \neq 0$ , it is called a non-homogeneous equation.

### homogeneous function

For the Constant Coefficient Second-Order Homogeneous Differential Equations have the form

$$ay'' + by' + cy = 0$$

Characteristic equation

$$ar^2 + br + c = 0$$

From the solution of the differential equation

- ullet Two unequal real roots  $r_1 
  eq r_2$  , the general solution is:  $y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
- ullet Two equal real roots  $r_1=r_2=r$  ,  $\ \ ext{the general solution is:} \ \ y(x)=(C_1+C_2x)e^{rx}$
- Two conjugate complex roots  $r_{1,2}=lpha\pmeta i$  , the general solution is:  $y(x)=e^{lpha x}\left(C_1\coseta x+C_2\sineta x
  ight)$

Example: Solving a Second-Order Linear Homogeneous Equation with Constant Coefficients

Solving a Second-Order Linear Homogeneous Equation with Constant Coefficients

$$y'' - 3y' + 2y = 0$$

Characteristic equation

$$r^2 - 3r + 2 = 0$$

Solve the characteristic equation

$$(r-1)(r-2)=0$$

The roots are  $r_1 = 1$  and  $r_2 = 2$ . Write the general solution Since the characteristic equation has two distinct real roots, the general solution is

$$y(x) = C_1 e^x + C_2 e^{2x}$$

Example: Solving a Second-Order Linear Homogeneous Equation with Complex Roots

$$y'' + 4y = 0$$

Characteristic equation

$$r^2 + 4 = 0$$

Solve the characteristic equation

$$r=\pm 2i$$

Write the general solution Since the roots are complex, the general solution is

$$y(x) = C_1 \cos 2x + C_2 \sin 2x$$

Non-Homogeneous Term with Trigonometric Functions

$$y'' + 4y = \sin 2x$$

Find the general solution to the homogeneous equation

The corresponding homogeneous equation is

$$y'' + 4y = 0$$

The characteristic equation is

$$r^2 + 4 = 0$$

Solving, we get  $r=\pm 2i$ . So the general solution to the homogeneous equation is:

$$y_h(x) = C_1 \cos 2x + C_2 \sin 2x$$

Find the particular solution

The non-homogeneous term is  $g(x) = \sin 2x$ . We assume the particular solution has the form:

$$y_p(x) = A\cos 2x + B\sin 2x$$

Substituting this into the equation and solving gives  $A = 0, B = \frac{1}{4}$ . Therefore, the particular solution is:

$$y_p(x)=rac{1}{4}{\sin 2x}$$

Write the general solution The total solution is

$$y(x)=C_1\cos 2x+C_2\sin 2x+rac{1}{4}\sin 2x$$

### non-homogeneous function

For non-homogeneous equations of the form ay'' + by' + cy = g(x), the general solution is the sum of the solution to the homogeneous equation  $y_h(x)$  and a particular solution  $y_p(x)$ 

$$y(x) = y_h(x) + y_p(x)$$

where

- $y_h(x)$  is the **general solution** to the corresponding homogeneous equation, and
- $y_p(x)$  is a particular solution to the non-homogeneous equation. Methods such as variation of parameters and undetermined coefficients are commonly used to find the particular solution.

EXAMPLE

Forced damping vibration we have the equation:

$$my'' + cy' + ky = F_0 \cos(\omega t).$$

This is a second-order nonhomogeneous equation with constant coefficients.

• Convert to standard form:

$$y''+rac{c}{m}y'+rac{k}{m}y=rac{F_0}{m}{
m cos}(\omega t).$$

To find the **Homogeneous solution** we solve the characteristic equation

$$r^2 + \frac{c}{m}r + \frac{k}{m} = 0$$

Three damping cases are obtained (underdamped, critically damped, and overdamped).

Then the **specific Solution**. The right side is a cosine function, a tentative solution.

$$y_p = A\cos(\omega t) + B\sin(\omega t).$$

Substituting A, B into the equation yields the steady-state response of the vibration. we have **general solution**:

$$y(t) = y_h(t) + y_n(t)$$

The first half is the decaying "transient solution," while the second half is the stable "forced vibration."