
Lecture Notes on Forced Oscillators Using Complex

Exponentials

1 Introduction

In the study of forced oscillations, using complex exponentials can simplify the mathe-
matical derivations and provide deeper insights into the behavior of the system. In this
lecture, we will re-derive the key equations governing forced oscillators using the complex
exponential form eiωt. This approach leverages Euler’s formula and simplifies the handling
of sinusoidal functions.

2 The Forced Oscillator Equation

Consider a massm attached to a spring with spring constant k, subject to a damping force
proportional to its velocity (damping coefficient b), and driven by an external periodic
force. The equation of motion is:

m
d2x

dt2
+ b

dx

dt
+ kx = F0 cos(ωt) (1)

To facilitate the use of complex exponentials, we express the driving force as:

F (t) = Re
{
F0e

iωt
}

(2)

We will solve the equation using F0e
iωt and take the real part of the solution at the

end.

3 Solution of the Equation

The general solution x(t) consists of:

(1) Homogeneous Solution (xh): Solution to the homogeneous equation (when F0 =
0).

(2) Particular Solution (xp): A specific solution that accounts for the driving force.

Thus:

x(t) = xh(t) + xp(t) (3)

3.1 Homogeneous Solution

The homogeneous equation is:

m
d2x

dt2
+ b

dx

dt
+ kx = 0 (4)

Divide through by m:
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d2x

dt2
+

b

m

dx

dt
+

k

m
x = 0 (5)

Define:

ω0 =

√
k

m
(natural frequency) (6)

2β =
b

m
(damping coefficient) (7)

The equation becomes:

d2x

dt2
+ 2β

dx

dt
+ ω2

0x = 0 (8)

The characteristic equation is:

r2 + 2βr + ω2
0 = 0 (9)

Solving for r:

r = −β ±
√

β2 − ω2
0 (10)

Underdamped Case (β2 < ω2
0)

The roots are complex:

r = −β ± iω1 (11)

where ω1 =
√

ω2
0 − β2.

The homogeneous solution is:

xh(t) = e−βt (A cos(ω1t) +B sin(ω1t)) (12)

This represents oscillations with exponentially decreasing amplitude.

3.2 Particular Solution Using Complex Exponentials

We propose a particular solution of the form:

xp(t) = X̃eiωt (13)

where X̃ is a complex amplitude to be determined.
We substitute xp(t) into the non-homogeneous equation:

m
d2xp

dt2
+ b

dxp

dt
+ kxp = F0e

iωt (14)

Compute the derivatives:
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dxp

dt
= iωX̃eiωt (15)

d2xp

dt2
= −ω2X̃eiωt (16)

Substitute back into the equation:(
−mω2X̃ + ibωX̃ + kX̃

)
eiωt = F0e

iωt (17)

Divide both sides by eiωt: (
−mω2 + ibω + k

)
X̃ = F0 (18)

Solve for X̃

Express the left side in terms of ω0 and β:

−mω2 + ibω + k = m
(
−ω2 + 2iβω + ω2

0

)
(19)

So:

m
(
ω2
0 − ω2 + 2iβω

)
X̃ = F0 (20)

Then:

X̃ =
F0

m (ω2
0 − ω2 + 2iβω)

(21)

Compute the Amplitude A and Phase ϕ

The physical solution is the real part of xp(t):

xp(t) = Re
{
X̃eiωt

}
(22)

Express X̃ in polar form:
Let:

D(ω) = ω2
0 − ω2 + 2iβω (23)

Compute the magnitude and phase of D(ω):
1. Magnitude:

|D(ω)| =
√

(ω2
0 − ω2)

2
+ (2βω)2 (24)

So:

|X̃| = F0

m|D(ω)|
(25)

2. Phase:
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ϕ = arg (D(ω)) = arctan

(
2βω

ω2
0 − ω2

)
(26)

Since X̃ =
F0

mD(ω)
, the phase of X̃ is the negative of the phase of D(ω):

X̃ =
F0

m|D(ω)|
e−iϕ (27)

Final Expression for xp(t)

Thus, the particular solution is:

xp(t) = Re
{
X̃eiωt

}
= |X̃| cos(ωt− ϕ) (28)

Therefore, the amplitude and phase angle are:

• Amplitude:

A = |X̃| = F0/m√
(ω2

0 − ω2)
2
+ (2βω)2

(29)

• Phase Angle:

ϕ = arctan

(
2βω

ω2
0 − ω2

)
(30)

This matches the results obtained using sine and cosine functions.

4 Resonance

Resonance occurs when the driving frequency ω is close to the natural frequency ω0.

4.1 Amplitude at Resonance

At resonance (ω = ω0):

|D(ω0)| = |2iβω0| = 2βω0 (31)

The amplitude becomes:

Amax =
F0/m

2βω0

=
F0

2mβω0

(32)

This shows that the maximum amplitude is inversely proportional to the damping
coefficient β.
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4.2 Phase at Resonance

At resonance:

ϕ = arctan

(
2βω0

0

)
=

π

2
(33)

The oscillator lags the driving force by 90◦.

5 Phase Relationships

• Low Frequencies (ω ≪ ω0):

ϕ ≈ arctan (0) = 0 (34)

The oscillator is in phase with the driving force.

• At Resonance (ω = ω0):

ϕ =
π

2
(35)

• High Frequencies (ω ≫ ω0):

ϕ ≈ arctan

(
2βω

−ω2

)
≈ arctan (−0) = π (36)

The oscillator is out of phase with the driving force.

6 Quality Factor and Damping

The Quality Factor Q quantifies the sharpness of the resonance peak:

Q =
ω0

2β
=

mω0

b
(37)

A higher Q indicates a lower rate of energy loss relative to the stored energy.

6.1 Bandwidth

The bandwidth ∆ω is defined as the range of frequencies over which the power is greater
than half its maximum value. For small damping:

∆ω =
ω0

Q
= 2β (38)

This shows that the bandwidth is inversely proportional to Q.

7 Energy Considerations

The average power supplied by the driving force equals the average power dissipated by
damping.
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7.1 Average Power Supplied

The instantaneous power is:

P (t) = F (t) · v(t) = F0 cos(ωt) · v(t) (39)

The velocity is:

v(t) =
dxp

dt
= −Aω sin(ωt− ϕ) (40)

So the instantaneous power is:

P (t) = −F0Aω cos(ωt) sin(ωt− ϕ) (41)

Using trigonometric identities, the average power over one period T =
2π

ω
is:

⟨P ⟩ = 1

2
F0Aω sin(ϕ) (42)

At resonance (ϕ =
π

2
):

⟨Pmax⟩ =
1

2
F0Amaxω0 (43)

Substituting Amax:

⟨Pmax⟩ =
F 2
0

4mβ
(44)

8 Examples of Forced Oscillators

1. Mechanical Systems: Bridges and buildings can resonate due to external forces
like wind or earthquakes.

2. Electrical Circuits: An RLC circuit driven by an AC source behaves similarly to
a mechanical oscillator.

3. Optical Systems: Resonance in optical cavities enhances certain frequencies of
light.

4. Biological Systems: The human ear utilizes resonance to amplify specific sound
frequencies.

9 Practical Applications

Resonance is utilized in various technologies:

• Radio tuners select desired frequencies.

• Quartz watches use mechanical resonance for timekeeping.

• Microwave ovens exploit molecular resonance of water.
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• Pushing a child on a swing at the right moment to increase amplitude.

• Breaking a glass with a sound at its resonant frequency.

10 Example: Dark Matter Field Coupling Through

B-L

In modern physics, it’s hypothesized that dark matter may interact with normal matter
through the B-L (Baryon-minus-Lepton) quantum number[1]. Suppose the external force
acting on the oscillator is due to a dark matter field ϕ(t) coupling to the B-L charge QB−L:

F (t) = gQB−Lϕ(t), (45)

where g is the coupling constant.
Assuming ϕ(t) = ϕ0 cos(ωDMt), the force becomes:

F (t) = gQB−Lϕ0 cos(ωDMt). (46)

This introduces an external driving force at frequency ωDM, which can resonate with
the oscillator under certain conditions, enhancing the sensitivity to dark matter detection.

10.1 Response of the Oscillator

Using the previous results, the amplitude of the oscillation due to the dark matter force
is:

XDM =
gQB−Lϕ0√

(k −mω2
DM)

2 + (bωDM)2
. (47)

At resonance (ωDM ≈ ω0 and low damping), the amplitude can become significantly
large, making the detection of such a force feasible.

10.2 Coding Task Introduction

Our goal is to model the forced harmonic oscillator system to evaluate the sensitivity of an
experimental setup to dark matter. By coding the equations of motion, we can simulate
the response of the system to different dark matter parameters and optimize the design
for maximum sensitivity.

10.2.1 Objectives

• Implement the differential equation of the forced harmonic oscillator in a computa-
tional tool (e.g., Python, MATLAB).

• Simulate the system’s response to an external force due to a dark matter field.

• Analyze how changes in parameters (m, b, k, g, ωDM) affect the amplitude and phase
of the oscillation.

• Explore resonance conditions and damping effects.
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10.2.2 Expected Outcomes

By completing this coding task, you will:

• Gain a deeper understanding of forced oscillations and resonance phenomena.

• Develop computational skills in modeling physical systems.

• Contribute to the exploration of dark matter detection methods using mechanical
oscillators.
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