1. Given two vectors $\vec{A} = 2 \hat{\imath} + 4 \hat{\jmath}$ and $\vec{B} = \hat{\imath} - 8 \hat{\jmath} + 6 \hat{k}$, evaluate the following expressions:

iv	$\vec{A} \cdot \vec{B} =$	
v	$\vec{A} \times \vec{B} =$	

2. Find the derivatives of the following functions:

i	$f(x) = 5x^4 - 2x^3 + 7$	f'(x) =			
ii	$g(z) = z \ln z$	g'(z) =			
iii	$h(r) = \sin r^3$	h'(r) =			

3. For $f(x) = x^3 - 6x^2 + 9x + 2$, find all local extrema by using the first derivative test. Find all the maxima and minima with the second derivative.

4. Compute the following integral:

$\int 2\sin(x) - 3\cos(x) dx =$	
$\int \frac{xdx}{3 - 2x^2} =$	
$\int \sin^2 x \cos x dx =$	

5. In the Cartesian coordinates, we generally use the $(\hat{\imath}, \hat{\jmath}, \hat{k})$ to represent the three unit vector of a vector. What are the unit-vectors in the cylindrical coordinates and spherical coordinates? Along which direction are they pointing? Use diagram to show your answer.

Cartesian coordinates	Cylindrical coordinates	Spherical coordinates
Unit Vectors:	Unit Vectors:	Unit Vectors:
$\hat{i},\;\hat{j},\;\hat{k}$		
Graph:	Graph:	Graph:
$ \begin{array}{c c} \hat{k} \\ \hat{j} \\ \hat{i} \end{array} $		

6. Find the solutions for the differential equation: 6 x'' + 5 x = 0. Here x'' represents the second derivative of x.