Westlake University Undergraduate Course Syllabus

1.Course Information

Course Name	Honors General Physics I		Credits	4
Class Hours	Teaching Hours	Practice Hours	Lab Hours	Total
	64	0	0	64
Prerequisite courses (Consistent with major roadmap)	This course will make use of calculus and linear algebra and provides a concise introduction to these subjects. Prior knowledge of calculus and linear algebra is not required, but having some background in these areas will be very helpful.			

2. Course Coordinator

Name	Shengchao Li	Contact Info	lishengchao@westlake.edu.cn	
Office	E5-226	Office	9:00-17:00	
Address		Hours		

3. Course Instructor

Name #1	Shengchao Li	Name #2	
Contact	lisher ashes @westlebe adv or	Contact	
Info	lishengchao@westlake.edu.cn	Info	
Name #3		Name #4	
Contact		Contact	
Info		Info	

4. Course Description (No more than 500 words)

This course totals 64 class hours and is divided into two main parts: Classical Mechanics and Thermodynamics. In the Classical Mechanics section, we will delve into the fundamental theories of vectors and kinematics, as well as various applications of Newton's laws of motion. Additionally, there will be a detailed discussion on the conservation laws in mechanics, such as the conservation of mechanical energy, momentum, and angular momentum.

The Thermodynamics and Statistical Mechanics section covers gas dynamics theory, temperature, and distribution theory, along with the basic laws and concepts of thermodynamics. Through the analysis of thermodynamic principles, students will gain a deep understanding of core thermodynamic concepts such as entropy, enthalpy, and free energy.

Through this course, students will not only appreciate the developmental trajectory of modern physics but also understand why physics is an essential component of contemporary culture. The course aims to cultivate the thinking modes of physicists and enhance their ability to analyze and solve problems, thereby viewing the world from a new perspective.

5. Learning Objectives

Gain a deep understanding of Galileo's principle of relativity, Newton's laws of motion, the law of universal gravitation, conservation laws and symmetry, vibrations and waves, the first and second laws of thermodynamics, Boltzmann distribution, and kinetic theory of gases. This will lay a solid foundation for subsequent courses.

6. Course Content

Part I: Classical Mechanics

Matter, Space-time scales, Perspectives of physics; Vectors, Scalar and cross products, Rotation, Linear algebra; Motion, Zeno's paradox, Displacement, Velocity, Acceleration, Calculus; Galilean relativity, Space-time symmetries; Newton's laws, Gravitation; Projectile motion, Harmonic oscillation, Differential equations; Energy conservation, Work, Potential energy; Momentum conservation, Rockets; Angular momentum conservation, Kepler's problem; Forced oscillator, Resonance, Transients; Coupled oscillators; Multi-particle systems, Momentum, Angular momentum; Fixed axis rotation, Moment of inertia, Rolling; 3D rotation, Gyroscope; Wave equation, Partial derivatives, Partial differential equations; Normal modes, Fourier analysis; Shock waves, Tsunami, Light waves; Wave interference, Diffraction.

Part II: Thermodynamics

Perspectives of thermodynamics, Emergentism; First law of thermodynamics, Perpetual motion machines of the first kind; Second law of thermodynamics, Entropy, Perpetual motion machines of the second kind; Free energy, Gibbs function, Maximal work; Applications of thermodynamics, Specific heat, Cooling, Ratchet; Phase transitions, Van der Waals theory, Clausius-Clapeyron equation; Kinetic theory, Diffusion, Drift, Conductivity; Statistical meaning of entropy, Boltzmann distribution; Information entropy.

Part III: Supplemental Materials

LC circuits, Mechanical oscillators; Fermat's principle of geometric optics, Variational methods; Maupertuis's principle, Catenary, Brachistochrone curve; Random walk, Normal distribution, Bayesian statistics, Markov vs. Martingale, Probability elements.

	7. Course	Schedu	le		
Week	Session	Class Hour	Instructor(s)	Theme/Topic	Teaching activities (lecture/practical)
1 st week	1	2	Shengchao Li	Physics and Natural Philosophy Theories	Lecture
1 st week	2	2	Shengchao Li	Calculation and Rotation Theory of Vectors	Lecture
2 nd week	1	2	Shengchao Li	Zeno's Paradox: Limits and Motion	Lecture
2 nd week	2	2	Shengchao Li	Displacement, Velocity, Acceleration	Lecture
3 rd week	1	2	Shengchao Li	Ballistic Motion with Resistance	Lecture
3 rd week	2	2	Shengchao Li	Simple Harmonic Motion	Lecture
4 th week	1	2	Shengchao Li	Damped Vibration	Lecture
4 th week	2	2	Shengchao Li	Forced Vibration and Resonance	Lecture
5 th week	National Day Holiday Recess (according to school calendar)				
6 th week	1	2	Shengchao Li	Newton's Laws of Motion	Lecture
6 th week	2	2	Shengchao Li	Inertial and Non-Inertial Systems	Lecture
7 th week	1	2	Shengchao Li	The Law of Conservation: Mechanical Energy	Lecture
7 th week	2	2	Shengchao Li	Mechanical Energy (2)	Lecture
8 th week	1	2	Shengchao Li	Conservation Law: Momentum	Lecture
8 th week	2	2	Shengchao Li	The Law of Conservation: Angular Momentum	Lecture
9 th week	1	2	Shengchao Li	Kepler's Problem	Lecture
9 th week	2	2	Shengchao Li	Theory of Rigid Body Fixed Axis Rotation	Lecture
10 th week	1	2	Shengchao Li	Euler's Rigid Motion Theorem	Lecture
10 th week	2	2	Shengchao Li	Midterm Exam	/
11 th week	1	2	Shengchao Li	Gas Dynamics Theory	Lecture

11 th week	2	2	Shengchao Li	Temperature and Distribution	Lecture
12 th week	1	2	Shengchao Li	Maxwell-Boltzmann Distribution	Lecture
12 th week	2	2	Shengchao Li	Blackbody Radiation	Lecture
13 th week	1	2	Shengchao Li	The First and Second Laws of Thermodynamics	Lecture
13 th week	2	2	Shengchao Li	Entropy	Lecture
14 th week	1	2	Shengchao Li	State Variable	Lecture
14 th week	2	2	Shengchao Li	Analytical Thermodynamics	Lecture
15 th week	1	2	Shengchao Li	Statistical Thermodynamics	Lecture
15 th week	2	2	Shengchao Li	The Third Law of Thermodynamics	Lecture
16 th week	1	2	Shengchao Li	Applied Thermodynamics	Lecture
16 th week	2	2	Shengchao Li	Lesson Summary	Lecture

8. Assessment Weight

Type of Assessment	Percentage of Final Score	Notes
Attendance	/	
Class Performance	1	
Quiz	/	
Project	1	
Assignments	25	
Mid-term Exam	25	
Final Exam	30	
Other	20	Experiment

9.Grading

 $\sqrt{\mathbf{A}}$. Graded

B. Pass/Fail

C. Hundred Point Scale

10. Textbook and Supplementary Readings

Text Book:

R. P. Feynman, Feynman lecture notes of physics (I), New Millennium edition (January 4, 2011). Reference Books:

1. C. Kittel, W. D. Knight, & M. A. Ruderman, Mechanics: Berkeley Physics Course, McGraw-Hill Book Company; Volume 1 (January 1, 1965).

2. Heat and Thermodynamics, M. W. Zemansky, R. H. Dittman, McGraw-Hill College; Subsequent edition (November 1, 1996).