Lecture 9: Conservation Law One: Energy Conservation (part II)

Several forces:

If all of them are conservative forces, each of them gives rise to a potential:

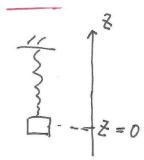
$$\vec{F}_1 = -\nabla U_1, \vec{F}_2 = -\nabla U_2, \dots$$

then

$$E = E_k + U_1(\vec{r}) + U_2(\vec{r}) + \cdots$$
 is conserved

example: spring in a gravity field

$$E = E_k + mgz + \frac{1}{2}kz^2$$

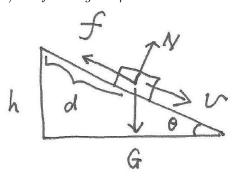


Non-conservative force

$$\Delta E_k = W_{\text{con}} + W_{\text{ncon}} = -\Delta U + W_{\text{ncon}}$$

$$\Rightarrow \Delta (E_k + U) = W_{\text{ncon}}$$

example: $\Delta (E_k + U) = -fd = mg \sin \theta \mu d$



$$\begin{split} E_{k,i} &= 0, \quad U_i = mgh = mgd\sin\theta \\ T_f &=? \quad U_f = 0 \quad \Rightarrow T_f = mgd\sin\theta - mgd\cos\theta\mu = \frac{1}{2}mv_f^2 \\ v_f &= \sqrt{2gd(\sin\theta - \mu\cos\theta)} \end{split}$$

1D motion: F_x

If F_x is only coordinate-dependent, then F_x is conservative. This is because any closed loop in 1D has to ame back along the same path $\int_1^2 dx F_x + \int_2^1 dx F_x = 0$

Then the potential energy U(x) can be simply integrated as

$$U(x) = -\int_{x_0}^x F_x(x') dx'$$

 x_0 can be any point U(x) with different x_0 is up to a constant.

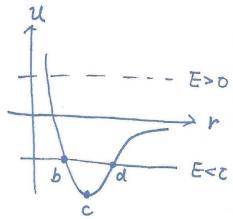
example: potential energy for a diatomic molecule

(1) E < 0 - bound states

At b and $d \Rightarrow T = 0$, turning points. At c,

$$\frac{\partial U}{\partial r} = 0, \frac{\partial^2 U}{\partial r^2} > 0.$$

c is equilibrium point



(2) E > 0 - scattering states

We can formally complete the solution of motion in 1D

$$T = \frac{1}{2}m\dot{x}^2 = E - U(x) \Rightarrow \dot{x}(x) = \pm \sqrt{\frac{2}{m}}\sqrt{E - U(x)}$$

General Physics I 2025, Lecture 9

© Westlake University

The direction of $\dot{x}(x)$ can be either right/left mover. we also have

$$\dot{x} = \frac{dx}{dt} \Rightarrow dt = \frac{dx}{\dot{x}(x)} \Rightarrow \int_{t_i}^{t_f} dt = \int_{x_i}^{x_f} \frac{dx}{\dot{x}(x)} = t_f - t_i$$

Suppose \dot{x} is positive, we have

$$t_f - t_i = \sqrt{\frac{m}{2}} \int_{x_0}^{x} \frac{dx'}{\sqrt{E - u(x')}}.$$

 \dot{x} can change directions at turning points, and we can treat by dividing the motion into different regions. In each region, \dot{x} 's direction is fixed, and we add the time of each region together.

Example:

1) free fall:

$$U('z) = -mqz$$

and

$$\Rightarrow \dot{z}(z) = \sqrt{\frac{2}{m}} \sqrt{E - U(z)} = \sqrt{2gz}$$

 $E=0, v_{in}=0 \text{ at } z=0$

$$t=\int_0^z \frac{dz'}{\dot{z}\left(z'\right)}=\int_0^z \frac{dz'}{\sqrt{2gz'}}=\sqrt{\frac{2z}{g}} \Rightarrow z=\frac{1}{2}gt^2$$

2) harmonic oscillator:

 $U = \frac{1}{2}kx^2$ with energy E.

The turning points at $\pm A$, with

$$\frac{1}{2}kA^2 = E.$$

consider at
$$\left\{ \begin{array}{ll} t_{\rm in} &= 0 \\ x_0 &= A \end{array} \right.$$
 and at $\left\{ \begin{array}{ll} t_f = T/4 \\ x_f &= 0 \end{array} \right.$

General Physics I 2025, Lecture 9

© Westlake University

we have

$$\dot{x}(x) = -\sqrt{\frac{2}{m}} \left(E - \frac{1}{2} k x^2 \right)^{1/2}$$

$$\Rightarrow T/4 = + \int_A^0 \frac{dx}{\dot{x}} = \sqrt{\frac{m}{2}} \int_0^A dx \frac{1}{\left(E - \frac{1}{2} k x^2 \right)^{1/2}}$$

$$= \sqrt{\frac{m}{2}} \left(\frac{k}{2} \right)^{-1/2} \cdot \int_0^A dx \frac{1}{A \left(1 - \left(\frac{x}{A} \right)^2 \right)^{1/2}}$$

$$= \sqrt{\frac{m}{k}} \int_0^1 dy \frac{1}{\left(1 - y^2 \right)^{1/2}} = \omega_0^{-1} \arcsin y \Big|_0^1 = \frac{\pi}{2\omega_0}$$

$$\Rightarrow T = \frac{2\pi}{\omega_0} \quad \text{where } \omega_0 = \sqrt{k/m}.$$

Several objects: Atwood machine with constraints

Two masses suspended by a massless s inextensible string

$$\Delta (E_{k_2} + u_2) = W_2^T$$

$$Pulley$$

$$G_1$$

 $\Delta \left(E_{k_1} + u_1 \right) = W_1^T$

Tensions on m_1 and m_2 are the same, but $d\left(S_1+S_2\right)=0 \to \text{constraint}$

General Physics I 2025, Lecture 9

© Westlake University

No elasticity, hence

$$W_1^{\text{ten}} + W_2^{\text{ten}} = \int ds_1 W_1^{\text{ten}} + \int ds_2 W_2^{\text{ten}} = \int ds_1 T + \int ds_2 T$$
$$= \int T (ds_1 + ds_2) = 0$$
$$\Rightarrow \Delta (E_{k_1} + E_{k_2} + u_1 + u_2) = 0$$

In general, if a system contains several particles, with constraints, and if the constraining force does not do the total work on the system, they can be neglected in the total energy.

Energy of two interacting particles

 $\begin{cases} \vec{F}_{12} = \vec{F}_{12} \left(\vec{r}_1 - \vec{r}_2 \right) & - \text{ translation symmetry} \\ \vec{F}_{12} = -\vec{F}_{21} & - \text{ interaction only depends on the relative displacement} \end{cases}$

 $\vec{F}_{12}\left(\vec{r}_1-\vec{r}_2\right)$, if for fixed \vec{r}_2 , is a conservative force for \vec{r}_1 , i.e. $\oint d\vec{r}_1 \cdot \vec{F}_{12}\left(\vec{r}_1-\vec{r}_2\right) = 0$, then we express

$$\vec{F}_{12} = -\nabla_{\vec{r}_1} U \left(\vec{r}_1 - \vec{r}_2 \right).$$

then the same potential can also give rise to

$$\vec{F}_{21} = -\nabla_{\vec{r}_2} U_{12} (\vec{r}_1 - \vec{r}_2) = -\vec{F}_{12} \rightarrow \text{Newton's 3rd law}$$

Now apply the work-kinetic theorem,

$$\begin{aligned} dE_{k_1} &= d\vec{r}_1 \cdot \vec{r}_{12} \\ dE_{k_2} &= d\vec{r}_2 \cdot \vec{r}_{21} \end{aligned} \right\} \Rightarrow \\ d\left(E_{k_1} + E_{k_2}\right) &= \vec{F}_{12} \cdot (d\vec{r}_1 - d\vec{r}_2) \\ &= d\left(\vec{r}_1 - \vec{r}_2\right) \cdot \left(-\nabla_1 U_{12} \left(\vec{r}_1 - \vec{r}_2\right)\right) \\ &= -d\vec{r} \cdot \nabla u_{12} (\vec{r}) = -dU(\vec{r}) \end{aligned}$$

 $\vec{r} = \vec{r}_1 - \vec{r}_2 \leftarrow \text{relative coordinate}$

$$d(\underbrace{E_{k_1} + E_{k_2} + U(\vec{r})}_{E}) = 0$$

General Physics I 2025, Lecture 9

In principle, we can also include the external conservative forces on 1 and 2, and introduce potentials. $U_1^{\rm ex}$ and $U_2^{\rm ex}$, then

$$E = T_1 + T_2 + u_1^{ey_s} + u_2^{ex} + u_{12}.$$

This process can be generalized to n-particle conservative systems. With

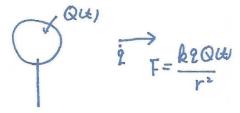
$$E = T_1 + T_2 + \dots + U_1^{ex} + U_2^{ex} + \dots + U_n^{ex} + U_{12} + \dots + U_{1n} + U_{23} + \dots + U_{2n} + \dots + U_{n-1,n}$$

$$E = \sum_{i=1}^{n} (T_i + U_i^{ex}) \leftarrow \text{ single body}$$

$$+ \sum_{i \leq j} U_{ij} \leftarrow \text{ interaction (double-counting excluded)}$$

Time-dependent potential energy

If $\vec{F}(\vec{r},t)$ satisfies $\oint d\vec{r} \cdot \vec{F}(\vec{r},t) = 0$, but it's time-dependent, then we can still write $\vec{F}(\vec{r},t) = -\nabla U(\vec{r},t)$. Nevertheless E = T + U is no longer conserved.



For a changing charge Q(t), we can still define

$$U(\vec{r},t) = -\int_{\vec{r}_0}^{\vec{r}} \vec{F}(\vec{r}',t) d\vec{r}'.$$

Now check

$$dT = \frac{dT}{dt}dt = \frac{d}{dt}\left(\frac{1}{2}mv^2\right)dt = m\dot{\vec{v}}\cdot\vec{v}dt = \vec{F}\cdot d\vec{r}$$

$$dU(\vec{r},t) = \frac{\partial U}{\partial x}dx + \frac{\partial U}{\partial y}dy + \frac{\partial U}{\partial z}dz + \frac{\partial U}{\partial t}dt$$

$$= \nabla U \cdot d\vec{r} + \frac{\partial U}{\partial t}dt = -\vec{F}\cdot d\vec{r} + \frac{\partial U}{\partial t}dt$$

$$\Rightarrow dT = -dU + \frac{\partial U}{\partial t}dt \implies d(T+U) = \frac{\partial U}{\partial t}dt$$