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Lecture 9: Conservation Law One: Energy Con-
servation (part II)
Several forces:

If all of them are conservative forces, each of them gives rise to a potential:

F⃗1 = −∇U1, F⃗2 = −∇U2, ..

then

E = Ek + U1(r⃗) + U2(r⃗) + · · · is conserved

example: spring in a gravity field

E = Ek +mgz +
1

2
kz2

Non-conservative force

∆Ek = Wcon +Wncon = −∆U +Wncon

⇒ ∆(Ek + U) = Wncon

example: ∆(Ek + U) = −fd = mg sin θµd

General Physics I 2025, Lecture 9 | © Westlake University



Last update: October 4, 2025

Ek,i = 0, Ui = mgh = mgd sin θ

Tf =? Uf = 0 ⇒ Tf = mgd sin θ −mgd cos θµ =
1

2
mv2f

vf =
√
2gd(sin θ − µ cos θ)

1D motion: Fx

If Fx is only coordinate-dependent, then Fx is conservative. This is because any
closed loop in 1D has to ame back along the same path

∫ 2

1
dxFx +

∫ 1

2
dxFx = 0

Then the potential energy U(x) can be simply integrated as

U(x) = −
∫ x

x0

Fx (x
′) dx′

x0 can be any point U(x) with different x0 is up to a constant.

example: potential energy for a diatomic molecule
(1) E < 0 - bound states
At b and d⇒ T = 0, turning points. At c,

∂U

∂r
= 0,

∂2U

∂r2
> 0.

c is equilibrium point

(2) E > 0 - scattering states
We can formally complete the solution of motion in 1D

T =
1

2
mẋ2 = E − U(x)⇒ ẋ(x) = ±

√
2

m

√
E − U(x)
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The direction of ẋ(x) can be either right/left mover.
we also have

ẋ =
dx

dt
⇒ dt =

dx

ẋ(x)
⇒

∫ tf

ti

dt =

∫ xf

xi

dx

ẋ(x)
= tf − ti

Suppose ẋ is positive, we have

tf − ti =

√
m

2

∫ x

x0

dx′√
E − u (x′)

.

ẋ can change directions at turning points, and we can treat by dividing the
motion into different regions. In each region, ẋ ’s direction is fixed, and we add
the time of each region together.

Example:
1) free fall:

U (′z) = −mgz

and

⇒ ż(z) =

√
2

m

√
E − U(z) =

√
2gz

E=0, vin = 0 at z=0.

t =

∫ z

0

dz′

ż (z′)
=

∫ z

0

dz′√
2gz′

=

√
2z

g
⇒ z =

1

2
gt2

2) harmonic oscillator:
U = 1

2kx
2 with energy E.

The turning points at ±A, with
1

2
kA2 = E.

consider at
{

tin = 0
x0 = A

and at
{

tf = T/4
xf = 0
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we have

ẋ(x) = −
√

2

m

(
E − 1

2
kx2

)1/2

⇒ T/4 = +

∫ 0

A

dx

ẋ
=

√
m

2

∫ A

0

dx
1(

E − 1
2kx

2
)1/2

=

√
m

2

(
k

2

)−1/2

·
∫ A

0

dx
1

A
(
1−

(
x
A

)2)1/2

=

√
m

k

∫ 1

0

dy
1

(1− y2)
1/2

= ω−1
0 arcsin y

∣∣1
0
=

π

2ω0

⇒ T =
2π

ω0
where ω0 =

√
k/m.

Several objects: Atwood machine with constraints

Two masses suspended by a massless s inextensible string

∆(Ek1
+ u1) = WT

1

∆(Ek2
+ u2) = WT

2

Tensions on m1 and m2 are the same, but d (S1 + S2) = 0→ constraint
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No elasticity, hence

W ten
1 +W ten

2 =

∫
ds1W

ten
1 +

∫
ds2W

ten
2 =

∫
ds1T +

∫
ds2T

=

∫
T (ds1 + ds2) = 0

⇒ ∆(Ek1
+ Ek2

+ u1 + u2) = 0

In general, if a system contains several particles, with constraints, and if
the constraining force does not do the total work on the system, they can be
neglected in the total energy.

Energy of two interacting particles{
F⃗12 = F⃗12 (r⃗1 − r⃗2) − translation symmetry
F⃗12 = −F⃗21 - interaction only depends on the relative displacement

F⃗12 (r⃗1 − r⃗2), if for fixed r⃗2, is a conservative force for r⃗1, i.e.
∮
dr⃗1·F⃗12 (r⃗1 − r⃗2) =

0, then we express
F⃗12 = −∇r⃗1U (r⃗1 − r⃗2) .

then the same potential can also give rise to

F⃗21 = −∇r⃗2U12 (r⃗1 − r⃗2) = −F⃗12 → Newton’s 3rd law

Now apply the work-kinetic theorem,

dEk1 = dr⃗1 · r⃗12
dEk2

= dr⃗2 · r⃗21

}
⇒

d (Ek1 + Ek2) = F⃗12 · (dr⃗1 − dr⃗2)

= d (r⃗1 − r⃗2) · (−∇1U12 (r⃗1 − r⃗2))

= −dr⃗ · ∇u12(r⃗) = −dU(r⃗)

r⃗ = r⃗1 − r⃗2 ← relative coordinate

d(Ek1
+ Ek2

+ U(r⃗)︸ ︷︷ ︸
E

) = 0
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In principle, we can also include the external conservative forces on 1 and 2,
and introduce potentials. U ex

1 and U ex
2 , then

E = T1 + T2 + ueys

1 + uex
2 + u12.

This process can be generalized to n-particle conservative systems. With

E = T1 + T2 + · · ·Tn + Uex
1 + Uex

2 + · · ·Uex
n

+ U12 + · · ·U1n + U23 + · · ·U2n + · · ·Un−1,n

E =

n∑
i=1

(Ti + Uex
i )← single body

+
∑
i<j

Uij ← interaction (double-counting excluded)

Time-dependent potential energy

If F⃗ (r⃗, t) satisfies
∮
dr⃗ · F⃗ (r⃗, t) = 0, but it’s time-dependent, then we can still

write F⃗ (r⃗, t) = −∇U(r⃗, t). Nevertheless E = T + U is no longer conserved.

For a changing charge Q(t), we can still define

U(r⃗, t) = −
∫ r⃗

r⃗0

F⃗ (r⃗′, t) dr⃗′.

Now check

dT =
dT

dt
dt =

d

dt

(
1

2
mv2

)
dt = m ˙⃗v · v⃗dt = F⃗ · dr⃗

dU(r⃗, t) =
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz +

∂U

∂t
dt

= ∇U · dr⃗ + ∂U

∂t
dt = −F⃗ · dr⃗ + ∂U

∂t
dt

⇒ dT = −dU +
∂U

∂t
dt ⇒ d(T + U) =

∂U

∂t
dt
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