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Lecture 6: Kepler’s Problem
Newton once said that he stood on the shoulders of giants. Although it is said
he was alluding to Hooke negatively, we can understand it in a positive way.
Scientifically, the giants for Newton are Galileo and Kepler (1571–1630AD).
Galileo’s contribution was already presented in previous lectures, and now we
proceed to study Kepler’s problem. The solution to Kepler’s problem was ac-
complished by Newton, based on which the concept of universal gravity came
into being. This is one of the most influential achievements of the human mind.

6.1 Kepler’s story
Kepler summarized Tycho Brahe’s observational data and proposed three laws
of planetary motion, based on which Newton identified the inverse–square law
of gravity. This was actually a quite complicated and interesting story.

At Kepler’s time, people only knew five planets besides the Earth: Mercury,
Venus, Mars, Jupiter, and Saturn. Kepler was inspired by the fact that there
are five convex regular polyhedra (Platonic solids): tetrahedron, cube, octahe-
dron, dodecahedron, and icosahedron. He proposed a one-to-one correspondence
between the five planets and the five Platonic solids:

Mercury ↔ octahedron, Venus ↔ icosahedron, Mars ↔ dodecahe-
dron, Jupiter ↔ tetrahedron, Saturn ↔ cube.

As shown in Fig. 6.1, the sphere of the Earth’s orbit is set as a reference.
The Earth’s orbital sphere is circumscribed to a dodecahedron whose circum-
scribed sphere is the Mars orbit. The Mars orbital sphere is circumscribed to a
tetrahedron whose circumscribed sphere is the Jupiter orbit. Furthermore, the
Jupiter orbital sphere is circumscribed to a cube whose circumscribed sphere is
the Saturn orbital sphere. On the other hand, the Earth’s orbital sphere has an
inscribed icosahedron whose inscribed sphere is the Venus orbital sphere. The
Venus orbital sphere has an inscribed octahedron whose inscribed sphere is the
Mercury orbital sphere.

Kepler wrote his theory in a book and sent it to Tycho Brahe, who spent his
life observing planetary motion and accumulated enormous data. (He also sent
it to Galileo, but Galileo did not respond.) Tycho Brahe welcomed and hired
Kepler as his assistant. After Tycho Brahe’s passing away, Kepler spent 20 years
analyzing Tycho’s data and hoped to verify his model. To his disappointment,
Kepler failed to fit Mars’s orbit by a circle. Finally, in 1605, he reluctantly
recognized that planetary orbits are ellipses, which is Kepler’s first law. The
largest eccentricity of planetary orbits is that of Mercury, which is 0.2. Eccen-
tricities for others are not large: emars = 0.09, ejupiter = 0.05, esaturn = 0.05,
euranus = 0.05, eearth = 0.02, eneptune = 0.008, evenus = 0.007, and emoon = 0.05,
which are good approximations to circles. After further studies, he published
Kepler’s second law, i.e., the area law, and the third law which relates the radii
and periods of different orbits. Nevertheless, Kepler did not feel pride in these
discoveries since an ellipse is not as “perfect” as a circle.
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Figure 6.1 (from Wikipedia). Kepler’s model of the solar system with suggested
correspondences: Mercury ↔ octahedron, Venus ↔ icosahedron, Mars ↔ do-
decahedron, Jupiter ↔ tetrahedron, Saturn ↔ cube.

Hence, Kepler discovered the laws of planetary motion in a dramatic way.
He was studying the wrong problem but arrived at the correct answer. Kepler’s
laws served as the motivation and foundation for Newton’s theory of gravity.

6.2 Kepler’s three laws

6.2.1 The first law
The planet’s orbit is a planar ellipse, and the Sun lies at one of the foci of the
ellipse.

Kepler’s first law is actually a very strong statement. Generally speaking,
a planet moves in three-dimensional (3D) space, but this law states that it is
planar. A planar motion does not always form a closed orbit, but Kepler’s
first law asserts that it is closed and periodic. Copernicus, influenced by the
aesthetic philosophy of the Greeks, thought that a planet’s orbit should be a
circle. Nevertheless, Kepler figured out that, in general, a planetary orbit is an
ellipse. A circular orbit is a special case in which the Sun lies at the center.

6.2.2 The second law
Since the general orbit of a planet is elliptical rather than circular, the motion
at each point on the orbit is different. To connect the motion along the orbit is
precisely what Kepler’s second law tells us:
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Figure 6.2 Kepler’s second law. The area that the Earth–Sun line sweeps in a
unit time ∆t is proportional to the Earth’s angular momentum.

The areas swept by the line connecting the Sun and a planet are equal in equal
time intervals.

Assume that within a time interval ∆t, the line running from the Sun to a
planet sweeps an area ∆S. Kepler’s second law states that ∆S/∆t is a constant.

Consider two special positions in a planetary orbit: the apogee (the farthest
point from the Sun) and the perigee (the nearest point from the Sun). Denote
the displacement vectors relative to the Sun at the apogee and perigee as ra and
rb, respectively. Correspondingly, the velocities are va and vb, then va ⊥ ra
and vb ⊥ rb.

The arc length traveled around the apogee during time ∆t is ∆s = v1∆t,
and the area swept at the apogee is ∆S = 1

2r1∆s = 1
2r1v1∆t. Similarly, the

same area should be swept during ∆t around the perigee: ∆S = 1
2r2v2∆t. Then

mr1v1 = mr2v2, (6.2)

where the planet mass m is multiplied. The product of linear momentum and
displacement is actually the angular momentum, whose precise definition will
be given later. It means that the angular momentum L1 at the apogee equals
L2 at the perigee. Since r1 > r2, we have v1 < v2.

If the planet is at a general point in the orbit, then v and r are no longer
perpendicular. Their relative angle is denoted by θ. Then the area swept during
a small time interval ∆t is

∆S = 1
2 rv sin θ, (6.3)

and, with an area direction,

∆S = 1
2 r× v.
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Hence it means angular momentum conservation,

L = m r× v, (6.4)

which does not change with time.
Angular momentum conservation is a fundamental law of nature as a conse-
quence of spatial isotropy, which will be explained later. Simply put, because
the gravitational force passes through the Sun’s center, it does not generate
torque to change the angular momentum.

6.2.3 The third law
Different initial conditions can lead to different orbits. Kepler’s third law con-
nects different orbits:
For different orbits, the ratio between the cube of the semi-major axis and the
square of the period is a constant.

For an elliptic orbit (Fig. 6.3), the origin is set at the focus. The y-axis
intersects the ellipse and cuts a chord (the latus rectum), whose half-length
is denoted as h. The x-axis is the major axis intersecting the ellipse, whose
half-length is a.

Figure 6.3 For an elliptic orbit, the total energy is determined by the semi-

major axis a as E = −GMm

2a
. The angular momentum is determined by the

half-length of the latus rectum h as l = m
√
GMh = mh

√
GM/h.

Kepler’s third law implies the inverse–square law: Consider the special case
of a circular orbit, then a = R. A simple dimensional (scaling) analysis is
as follows. Due to the nature of periodic motion, the acceleration scales as
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F/m ∼ v/T ∼ R/T 2. According to Kepler’s third law T 2 ∼ R3, we arrive at

F ∼ 1

R2
. (6.5)

Certainly, the above argument should not be viewed as a proof—rather as a
motivation for further exploration.

6.3 Solution to Kepler’s problem by the geometric method
Kepler’s laws are phenomenological laws based on astronomical observations,
whose simplicity and beauty are already impressive. Such beautiful laws cannot
be a coincidence, which stimulated physicists including Isaac Newton to explore
the underlying law of gravity. By assuming the inverse–square law of gravity,
Newton derived Kepler’s three laws of planetary motion. Although in modern
formalism this can be done concisely via calculus—and indeed solving motion
under forces was a main motivation for Newton to invent his fluxional calculus—

Figure 6.4 A page of Newton’s Principia.

Figure 6.5 The geometric proof of Kepler’s second law.

interestingly, in the Principia Newton did not use calculus. Rather, he adopted

General Physics I 2025, Lecture 6 | © Westlake University



Last update: September 26, 2025

the style of Euclid’s Elements using geometric methods. At that time, the
mathematical foundation of calculus was not rigorously established (it would be
in the 19th century). Newton wanted to avoid criticism of infinitesimals that
might hinder recognition of his theory of gravity.

6.3.1 Proof of Kepler’s second law
Assume gravity is a central force field, which is sufficient for the proof of Kepler’s
second law. Historically, it was important to ask: what drives the planets to
move around? Some believed that planets were propelled by invisible angels’
beating wings, implying a tangential driving force. However, we will show the
force is centripetal rather than tangential.

The geometric picture to prove Kepler’s second law is presented in Fig. (6.5).
Suppose the Sun is located at O and the planet starts from A. Within a small
time interval ∆t (first-order infinitesimal), it moves to B. We use a short line
segment AB to approximate its trajectory, with an error of second order. The

velocity is vAB =
AB

∆t
. If there were no gravity, in the next time interval ∆t, the

planet would continue straight toward C ′, such that AB = BC′. It is obvious
that

S△OAB = S△OBC′ . (6.6)

However, gravity pulls the planet back. The attraction is along the direction
of OB, such that the planet is pulled from C ′ to C, hence C′C ∥ OB, and

vBC =
BC

∆t
. It is easy to show that

S△OBC = S△OBC′ , (6.7)

since they share the same base and height. Hence within the same time interval
∆t, the areas swept by the Sun–planet line are equal,

S△OAB = S△OBC . (6.8)

Repeating this process—after consecutive intervals ∆t the planet arrives at
D,E, . . .—gives

S△OAB = S△OBC = S△OCD = S△ODE = . . . (6.9)

Moreover, one can see that the trajectory ABCD . . . is a planar curve. This
completes the proof of Kepler’s second law.

The area rate is
∆S

∆t
=

1

2m

mr2∆θ

∆t
=

L

2m
, where L is the magnitude of the

orbital angular momentum. If adding direction to the area, we arrive at

2m
∆S

∆t
=

mr2∆θ

∆t
= L. (6.10)
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6.3.2 Proof of Kepler’s first law
Next we prove Kepler’s first law—the trajectory is generally an ellipse—following
the method presented in “Feynman’s Lost Lecture: The Motion of Planets
Around the Sun.”

Kepler’s second law alone does not ensure a closed orbit. For simplicity, we
temporarily assume closedness and justify it later. Assume gravity is a central
inverse–square law,

F = −GMm

r2
er, (6.11)

where M is the Sun’s mass and m is the planet’s mass.
Newton realized the inverse–square law by comparing the Moon’s orbital mo-

tion with free fall on the ground. Ancient astronomers measured the Earth–Moon
distance compared to the Earth’s radius via parallax. The ratios dem/re by
Ptolemy, Huygens, and Tycho Brahe are close: 59, 60, 60.5. The falling distance
in one second on Earth’s surface is about 5m. How much is the Moon’s “falling
distance” in one second? Without Earth’s gravity, the Moon would follow the
tangent with distance ∆x = v∆t. To bend back to a circle, the Moon must
“fall” a distance s satisfying

v∆t

s
=

2dem
v∆t

,

s =
1

2

v2

dem
t2 =

1

2
ω2dem t2 =

2π2

T 2
dem t2. (6.12)

Plugging in T = 27.3 days and dem = 60 re, we arrive at s ≈ 1.36mm, which
is about 1/3676 ≈ 1/602 of the terrestrial 5m. This crude estimate accurately
suggests the inverse–square relation, building Newton’s confidence that satellites
and planets obey the same law. Thus the concept of universal gravity was born.

Now prove the elliptic orbit. In Fig. (6.6A), the Sun is at F . Start from
the perigee A on the orbit, and mark points B,C, . . . such that ∠BFA =
∠CFB = · · · = ∆θ with small ∆θ. The radii are rA, rB , rC , . . . and the ve-
locities vA,vB ,vC , . . ..

Compare ∆vBA = vB − vA and ∆vCB = vC − vB . The time to sweep
△BOA is

∆t =
S△BOA

∆S/∆t
=

1
2r

2
A∆θ

L/(2m)
=

mr2A∆θ

L
. (6.13)

Hence, by Newton’s second law,

∆vBA =
F∆t

m
= −GMm∆θ

L
eA, (6.14)

which is opposite the radial direction. The radius dependence cancels. Since
∆θ is fixed for each small triangle, ∆v has fixed magnitude while its direction
changes by ∆θ each step; thus the endpoints of the velocity vectors lie on a
circle in velocity space. From Eq. (6.14), the tangential direction of the velocity
circle reflects the displacement direction in real space, i.e., the velocity-space
motion is dual to the real-space motion.
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Figure 6.6 The geometric proof of the elliptical orbit of planet motion. A) F is
the location of the Sun and A is the perigee. The angle between two neighboring
radii is fixed at ∆θ. B) The velocity vectors vA,vB ,vC . . . are plotted from the
origin. Their ending points span a circle with the radius v = GMm

L , whose center
is denoted as C. C) Rotate the velocity circle by 90◦. Use the locations of O
and C as the two foci, and v as the major axis length to construct an ellipse.
Such an ellipse is similar to the planet orbit.

The circle’s center is generally not at the origin O; denote it C. By planar
geometry, the angle of ∆v about C equals its incremental direction change each
step. The circle radius is

vr =
∆v

∆θ
=

GMm

L
. (6.15)

The time evolution of v is periodic; does that imply periodic real-space
motion? Not always. However, by the geometric correspondence between real
and velocity spaces, the answer here is yes: when the velocity vector returns to
vA with the same tangent direction, the real-space direction is again FA. To
reconstruct the trajectory from the velocity circle, Feynman’s trick is to rotate
the velocity diagram by 90◦ (Fig. 6.6C) and reconstruct the real-space curve in
the same figure. Then v′

B is perpendicular to vB (the tangent to the real path).
To locate the tangent point, construct the bisector of Ov′B (parallel to vB). As
v′
B runs around the circle, the envelope of these bisectors forms an ellipse with

foci at O and C, and major axis equal to the circle radius.
To see this, recall the optical property of ellipses: a ray from one focus

reflects to the other. Connect Cv′B . The bisector line of vB intersects Cv′B
at B′. Connect OB′ and CB′. Since O and v′B are mirror images about the
bisector, the ray OB′ reflects to C, and B′v′B is the image of OB′. Hence

|CB′|+ |OB′| = |Cv′B | =
GMm

L
, (6.16)

so B′ lies on the ellipse. Moreover the bisector is tangent to the ellipse: for any
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other point P on this bisector,

|CP |+ |OP | = |CP |+ |v′BP | > |Cv′B |. (6.17)

We now build a point-to-point mapping between the constructed ellipse
(Fig. 6.6C) and the planetary trajectory by using polar coordinates. For the
real-space trajectory, set the origin at F ; for the constructed ellipse, set the
origin at the focus C. At each polar angle θ, the tangent lines on the two curves
are parallel. For a curve r(θ) = r er,

dr

dt
=

dr

dθ
er − r eθ. (6.18)

For the two curves,

r1 = r1(θ) er, r2 = r2(θ) er, (6.19)

parallel tangents at the same θ imply

1

r1

dr1
dθ

=
1

r2

dr2
dθ

, (6.20)

hence
r1(θ) = C0 r2(θ), (6.21)

for a constant C0. Therefore the real trajectory is similar to the constructed
ellipse—i.e., it is an ellipse.

6.4 Comment on Kepler’s third law
The geometric proof is beautiful and reveals the nature of planetary motion.
Next we use calculus for further exploration.

Kepler’s third law can be shown by a scaling method. Suppose r(t) solves

d2r(t)

dt2
= −GM

r2
er. (6.22)

Perform the scaling
rs(t) = λ1 r(λ2t). (6.23)

It is easy to show

d2rs(t)

dt2
+

GM

(rs)2
er = λ1λ

2
2

d2r(t)

dt2
+ λ−2

1

GM

(r)2
er = 0, (6.24)

provided
λ2
2λ

3
1 = 1. (6.25)

Thus the spatial size L of the orbit and the period T obey

L3/T 2 = const. (6.26)

Actually, Kepler’s third law is stronger: the length scale relevant for the energy
is the semi-major axis alone, independent of the minor axis.
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