
Last update: September 21, 2025

Lecture 5: Newton's laws of motion (2): Oscillation
Outline:

1. Harmonic oscillator and uniform circular motion

2. Phase space orbit, Bohr–Sommerfeld condition
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+
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mω2x2 =

1

2
mω2A2

∮
p dx = (n+ 1/2)h

3. Damped harmonic oscillators (overdamped, underdamped, critical)
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4: Cyclotron orbit:
R =

√
h̄c
qB

5: LC oscillators

L · d
2Q

dt2
+R · dQ

dt
+

Q

C
= 0.
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Math Crash Course for Physics Learners cf. Feynman Ch.22

We start in the middle: assume integers, counting, and the idea of add one. From
there we keep the rules and enlarge the numbers only when a problem can't be solved
without doing so.

1. Addition ⇒ Multiplication ⇒ Powers. Define a + b, then ab as repeated
addition, then an as repeated multiplication. The payoff is the simple algebra of
exponents:

am+n = aman, (am)n = amn.

2. Inverses. Solve the direct operations backwards: subtraction, division, roots,
logarithms. Logs turn products into sums:

log(ab) = log a+ log b, ex+y = exey.

3. Generalize the Numbers. When an equation has no solution, enlarge the
number system but keep the rules:

Z → Q → R → C, i2 = −1.

Complex numbers close algebraic equations and, miraculously, we don’t need to
invent anything beyond them.
4. The Jewel. Imaginary powers define the bridge from algebra to geometry:

eiθ = cos θ + i sin θ.

Hence real oscillations are just complex exponentials seen from the real axis.
5. ODEs Become Algebra. Exponentials are eigenfunctions of differentiation: if
x(t) = ert, then Dx = rx and D2x = r2x. A linear constant-coefficient ODE,

x′′ + 2γx′ + ω2
0x = 0,

reduces to the characteristic polynomial

r2 + 2γr + ω2
0 = 0.

Roots ⇒ solution form:

r = −γ ± iωd ⇒ x(t) = e−γt[A cos(ωdt) +B sin(ωdt)
]
.

Warning: Please take a more serious math course for deeper understanding.
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Harmonic oscillators
Oscillations are a general class of phenomena, such as the elastic spring oscil-
lator, simple pendulum, and the electromagnetic analogy of LC oscillator, etc.
Quantum mechanically, each quantum mode in the free case can be viewed as
a harmonic oscillator, such as the photon mode, the lattice vibration—phonon
modes, etc. Waves can be viewed as a series of vibration modes propagating in
space–time, including mechanical wave, E&M wave, and quantum mechanical,
gravitational waves.

Harmonic oscillator is a prototype system to study in all branches of physics.
It is simple, elegant, both in a classical way and in the quantum way. Harmonic
oscillator is also the first QM problem solved by Heisenberg.

According to Hook's law, the restoring force

F = −kx,

where x is measured from its equilibrium position. Then

m
d2x

dt2
= −kx

This is a second–order constant–coefficient differential equation. Actually,
we could find an elementary but smart method to solve it!

Consider a uniform circular motion, with the radius A and circular frequency
ω. The acceleration

a⃗ = −aêr = −a(cos θx̂+ sin θŷ)

= − a

A
(xx̂+ yŷ)

= −ω2(xx̂+ yŷ)
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let's project the motion to the x-direction, we have
ax = d2x

dt2 = −ω2x, which is the same as the harmonic oscillator's equation with
the identification ω =

√
k/m.

The solution to the uniform circular motion is obvious θ = ωt. Hence{
x = A cos(ωt+ φ)

y = A sin(ωt+ φ)

where A and φ are integration constants determined by the initial conditions.

x(0) = A cosφ
ẋ(0) = −ωA sinφ

⇒

{
A2 = x2(0) + (ẋ(0)/ω)2

tanφ = − ẋ(0)
ωx(0)

Generally speaking, this kind of differential equation can be solved by trying
x(t) = eλt, plugging in ẍ = −ω2x⇒ λ2 = −ω2 ⇒ λ = ±iω. Hence,

x(t) = a1e
iωt + a2e

−iωt

If we require x(t) is real, then a1 = a∗2 = Aeiφ, then ⇒ x(t) = A cos(ωt+ φ).

v(t) = ẋ(t) = −Aω sin(ωt+ φ)

We have seen the relationship between uniform circular motion and harmonic
oscillation. Actually, the relation is even closer if we organize

−v(t)/(Aω) = sin(ωt+ φ) = y(t)

Hence, the y-axis motion in fact reflects the velocity of the oscillation!
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Phase space orbits
In the canonical version of classical mechanics, momentum p⃗ = mv⃗ is also a
fundamental quantity. Based on the above reasoning,{

X = A cos(ωt+ φ)
P = mv = −mAω sin(ωt+ φ)

⇒
(
X

A

)2

+

(
P

mAω

)2

= 1

Figure 1: circular (elliptical) orbit in the phase space

Please note that the phase space orbit is chiral, i.e., it only rotates in one
direction, but not in the reverse direction!
cf. the cyclotron motion of electrons in the magnetic field.

Classically, the area enclosed by the orbit is arbitrary. Quantum mechanically,
however, the area has a minimum h

2 .
Bohr-Sommerfeld quantization condition∮

p dx = (n+ 1/2)h, n = 0, 1, 2, . . . (1)

over a period [(2)

Minimal area：
π ·A2

minωm =
h

2

⇒ l0 = Amin =

√
h̄

mω

Hence, for a harmonic oscillation, there exists a minimum length scale l0.
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Uncertainty principle:
Since the orbit area has a minimum, it means oscillators cannot be at rest. The
uncertainty

√
⟨∆x2⟩

√
⟨(∆p)2⟩ is of the same order as the area of the minimum

orbit. Roughly speaking √
⟨(∆x)2⟩

√
⟨(∆p)2⟩ ∼ h̄

a more precise calculation based on quantum mechanics shows√
⟨(∆x)2⟩

√
⟨(∆p)2⟩ ≥ h̄

2

Conservation law:
We have seen

(
p

mAω

)2
+
(
x
A

)2
= 1⇒ p2

2m + 1
2mω2x2 = 1

2mω2A2.
The first term is the kinetic energy: p2

2m = 1
2mv2.

The second term is determined by the status (location x) of the spring.

Let's calculate the work done to change the spring length to x:

W =
∫ x

0
F dx′ = k

∫ x

0
x′dx′ = 1

2kx
2 = 1

2mω2x2

⇒ kinetic energy + potential energy = total energy.

Damped harmonic oscillators:
Consider a harmonic oscillator, but with linear resistance.

F = mẍ = −mω2
0x− bẋ⇒ ẍ+ ω2

0x+
1

τ
ẋ = 0

where τ = m/b.

(1) Trying solution:

x(t) ∼ eiλt ⇒ −λ2 + iλ
τ + ω2

0 = 0

λ1,2 = ±

√
ω2
0 −

(
1

2τ

)2

+
i

2τ

Hence,

x(t) =
(
a1e

iωt + a2e
−iωt

)
e−

t
2τ , where ω =

√
ω2
0 −

(
1

2τ

)2

, β = 1/2τ

⇒friction decreases frequency
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Consider the real solution:

x(t) = A cos(ωt+ ϕ)e−βt, with ω = ω0

√
1−

(
1

2ω0τ

)2

The above solution works at 1
2τ < ω0, i.e., ω0τ > 1/2. This situation is called

the underdamped case.

Suppose we know the initial condition x0 and v0 at t=0, how to determine
a1, a2?

x0 = a1 + a∗1 ← choose a2 = a∗1, a1 = aR + iaI

dx

dt
=

(
ia1ωe

iωt − ia∗1ωe
−iωt

)
e−t/2τ +

(
−1
2τ

)
x(t)

v0 = iω (a1 − a∗1)−
1

2τ
(a1 + a∗1)

⇒
x0 = 2aR

v0 = −2aIω − 1
τ aR

⇒ aR = x0

2

⇒ aI =
v0+

x0
2τ

2ω

⇒ x = e−t/2τ

[
x0 cosωt+ v0 + x0/2τ

ω
sinωt

]
Quality factor Q = ωτ ≈ ω0τ (how many turns of oscillations before half-

decay)

(2) On the other hand, if ω0τ < 1/2 (i.e.,
√
ω2
0 −

(
1
2τ

)2
< 0), there will be

transient solutions.
Try x(t) ∼ e−λt, λ2 − λ/τ + ω2

0 = 0

λ1,2 =
1

2τ
±

√(
1

2τ

)2

− ω2
0

X(t) = a1e
−λ1t + a2e

−λ2t
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Plug in the initial conditions x0 and v0 ⇒

 a1 = λ1x0+v0
λ1−λ2

a2 = −λ2x0+v0
λ1−λ2

This situation is called the overdamped case.

(3) Critical case ω0τ = 1/2, λ = 1
2τ

x(t) = a1e
−λt + a2te

−λt

{
x0 = a1
v0 = −λa1 + a2 ⇒ a2 = v0 +

x0

2τ

⇒ x(t) = x0e
− t

2τ +
(
v0 +

x0

2τ

)
te−

t
2τ

Figure 2: Critical damping decays quickest. Here we show a sketch when x0 = 0.
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Other examples of oscillations
I. Motion in a uniform magnetic field

F⃗ =
q

c
v⃗ × B⃗. (Gaussian unit) set B⃗ = Bẑ


mv̇x = q

cBvy
mv̇y = − qB

c vx
mv̇z = 0

→ ω = gB
mc cyclotron frequency

⇒
{

v̇x = ωvy
v̇y = −ωvx

⇒ v̇x + iv̇y = −iω(vx + ivy)

Define η = vx + ivy ⇒ η̇ = −iωη

⇒ η = Ae−iωt with A = vx(0) + ivy(0)

We also define z = x+ iy.

⇒ z = const.+
∫ t

η dt

= z0(center of circle)+ iA

ω
e−iωt
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The cyclotron radius R

R =

∣∣∣∣Aω
∣∣∣∣ = vmc

qB
.

⇒ momentum magnitude P = qBR
c .

→ orbital angular momentum L = PR =
qBR2

c

Classically, the circular orbit can be of any size.
But quantum mechanically, it has a minimal size.
The orbital angular momentum

Lmin =
qBR2

c
= h̄⇒ R =

√
h̄c

qB
← the cyclotron radius.

II. LC oscillators

ε = −LdI

dt
= IR+

Q

C

⇒L
dI

dt
+ IR+

Q

C
= 0

d2Q

dt2
+

R

L

dQ

dt
+

Q

LC
= 0
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The analogy to momentum P follows the mapping:

P = mv → LI = Φ
x → Q
ẋ → I

We arrived at the harmonic oscillator in an electric circuit{
L→ m, 1

C → k

R
L = 1

τ ⇒ ω2
0 = k/m = 1

LC( x

A

)2

+

(
P

mωA

)2

= 1

(
Q

Q0

)2

+

(
Φ

LQ0ω0

)2

= 1

magnetic energy ⇌ electric energy
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§ Driven damped oscillations
Consider the LC circuit: in addition to the inductor, capacitor, and resistor,
there is also a driving EMF ε(t).

The governing equations are

IR+
Q

C
= L

dI

dt
+ ε(t),

L
d2Q

dt2
+R

dQ

dt
+

Q

C
= ε(t),

1

τ
≡ R

L
, ω2

0 ≡
1

LC
.

For a mechanical oscillator (mass m and external force F ),

ẍ+
1

τ
ẋ+ ω2

0 x = f(t), f(t) ≡ F (t)

m
.

These are the same constant-coefficient, linear, inhomogeneous ODEs. By
superposition,

x(t) = xh(t) + xp(t)

where xh(t) solves the homogeneous equation

ẍh +
1

τ
ẋh + ω2

0 xh = 0

and xp(t) is any particular solution of

ẍp +
1

τ
ẋp + ω2

0 xp = f(t) ←− steady solution.

Because the homogeneous part decays in time, the long-time behavior is de-
termined by xp(t).

Sinusoidal drive:
Take f(t) = f0 cosωt. Promote to the complex field by also considering

ÿ +
1

τ
ẏ + ω2

0 y = f0 sinωt, and define z = x+ iy.
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Then z obeys
z̈ +

1

τ
ż + ω2

0 z = f0e
iωt.

Try a particular solution zp(t) = C eiωt. Substituting gives

C

[
−ω2 +

iω

τ
+ ω2

0

]
= f0,

⇒ C =
f0

ω2
0 − ω2 + i ω/τ

.

Write C = Ae−iδ with

A2 =
f2
0

(ω2
0 − ω2)

2
+ (ω/τ)2

, δ = tan−1

(
ω/τ

ω2
0 − ω2

)
.

Hence
xp(t) = ℜ

[
Aei(ωt−δ)

]
= A cos(ωt− δ).

The full solution is

x(t) = A cos(ωt− δ) + c1e
λ1t + c2e

λ2t︸ ︷︷ ︸
transient

,

which decays to the steady motion as t → ∞. For a weakly damped system
(1/τ ≪ ω0),

x(t) = A cos(ωt− δ) + e−t/(2τ)[B1 cos(ωdt) +B2 sin(ωdt)] ,

where the damped natural frequency is

ωd =

√
ω2
0 −

(
1

2τ

)2

.

Transient motion depends on initial conditions but decays; different initial con-
ditions lead to the same steady motion (attractor).

General Physics I 2025, Lecture 5 | © Westlake University



Last update: September 21, 2025

§Resonance of a driven oscillator
Under the driving force f(t) = f0e

iωt we have

zp(t) =
f0 e

iωt

ω2
0 − ω2 + i ω/τ

.

Asymptotic limits.

ω → 0 : zp(t)→
f0
ω2
0

eiωt,

ω →∞ : zp(t)→ −
f0
ω2

eiωt (small amplitude).

Amplitude and peak.
The complex amplitude is

A(ω) =
f0

ω2
0 − ω2 + i ω/τ

, |A(ω)|2 =
f2
0

(ω2
0 − ω2)

2
+ (ω/τ)2

.

Maximal response occurs at

∂

∂(ω2)

[(
ω2
0 − ω2

)2
+ (ω/τ)2

]
= 0 ⇒ ωr =

√
ω2
0 −

1

2τ2
≈ ω0

(
1− 1

4ω2
0τ

2

)
.

Phase.

• For ω ≪ ω0: δ → 0 (in-phase; A is real).

• For ω ≫ ω0: δ → π (out of phase by π; A is real).

Dissipation produces a frequency-dependent phase delay.
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Width of the resonance (weak damping 1/τ ≪ ω0).
Near ω ≈ ω0, write ω = ω0+∆ so that ω2

0−ω2 ≈ −2ω0∆. The half-maximum
condition |A(ω)|2 = 1

2 |A(ω0)|2 gives

4ω2
0∆

2 =
(ω0

τ

)2

⇒ ∆ = ± 1

2τ
.

Thus the full width at half maximum is

Γ ≡ ω+ − ω− ≈
1

τ
, ω± ≈ ω0 ±

1

2τ
.
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Figure 3: Feynman Fig. 25–3. A sharply tuned resonance curve.

Application of Superposition and Resonance: Radio Tuning
Radio antennas are driven by multiple oscillating EM fields, e.g. Fa at ωa and
Fb at ωb. By superposition, the circuit receives xa + xb. Yet a resonant LC
circuit responds sharply near its natural frequency ω0. If tuned to ωa, then
xa ≫ xb, so the output is dominated by station a. Changing C (or L) shifts
ω0 = 1/

√
LC, allowing one to silence both or tune to ωb. Thus, radio tuning

illustrates superposition filtered by resonance.

Supplement: Linear Systems (Feynman Ch. 25)
Suppose a system is driven by Fa (e.g. oscillatory with ω = ωa), producing
response xa. For another force Fb, the response is xb. If both act together, the
solution is simply

L(xa + xb) = L(xa) + L(xb) = Fa(t) + Fb(t), (25.8)
so the total motion is xa + xb. This is the principle of superposition: a
complicated force may be decomposed into simpler pieces, solved individually,
and recombined.

An analogous result appears in electrostatics. A charge distribution qa gives
field Ea, while qb produces Eb. Together,

E = Ea + Eb,

so the total field is the vector sum. This works because Maxwell’s equations
are linear.

In summary, linear systems are powerful because they allow complex prob-
lems to be solved piece by piece and then assembled into the full solution.

Application of Superposition: Methods for Complicated Forces
To treat more complex forces, two general methods are used:

• Fourier Analysis: A general force can be expanded as a superposition
of sinusoidal components,

F (t) =

∫ ∞

−∞
F̃ (ω)eiωt dω,
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Figure 4: Feynman Fig. 25–1.An example of the principle of superposition for
linear systems.

where F̃ (ω) are the Fourier amplitudes. Since the response to eiωt is
known, the total motion is

x(t) =

∫ ∞

−∞
H(ω) F̃ (ω)eiωt dω,

with H(ω) the frequency response of the system.

• Green’s Function: If the response to a unit impulse δ(t) is the Green’
s function G(t), then for arbitrary forcing

F (t) −→ x(t) =

∫ ∞

−∞
G(t− τ)F (τ) dτ.

For example, for a damped oscillator the impulse response G(t) is a de-
caying sinusoid.

Both approaches rely on linearity: superposition of solutions mirrors super-
position of forces. Because many fundamental laws (e.g. Maxwell’s equations,
Schrödinger’s equation) are linear, these methods are of central importance in
physics and engineering.
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