
Lecture 3: Motion: Zeno’s paradox, displace-
ment, velocity, acceleration
Motion is a continuous process while our logical reasoning is discrete, or, step by
step. How to use discrete steps of reasoning to precisely describe a continuous
motion is a highly non-trivial problem. The ancient Greeks had already paid
attention to this problem as represented by the Zeno paradox. In fact, in order
for a deep understanding, an infinitesimal analysis is necessary, which are the
watershed ridge between the advanced mathematics and elementary one.

Zeno’s paradox
Zeno of Elea (490-430BC) was a Greek philosopher. He raised a paradox that
Achilles, a hero of the Trojan War in Greek mythology, could not catch up with
a tortoise. Later this paradox was recounted by Aristotle as ”In a race, the

Figure 3.1 Zeno’s paradox that Achilles cannot overtake a tortoise. Achilles’
and the tortoise’s initial positions are denoted $x_{0
$ and x1, respectively. When Achilles arrives at x1, the tortoise moves ahead
to x2. Then Achilles arrives at x2, and the tortoise moves to x3, and so on.
This paradox shows the gap between our perception and the outside world in

that our thinking is step by step while the motion is continuous.}

quickest runner can never over-take the slowest, since the pursuer must first
reach the point whence the pursued started, so that the slower must always hold
a lead.”

To be concrete, assume that Achilles’ velocity is va = 10 m/s and the tor-
toise’s vt = 0.1 m/s. Initially, Achilles is located at x0 = 0 m and the tor-
toise is ahead of Achilles at x1 = 99 m, and then the distance between them
s1 = x1 − x0 = 99 m. This is a math problem that we learned how to solve
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in elementary school. Assume that it takes Achilles the time T to overtake the
tortoise, then it can easily derived that,

T =
s1

va − vt
=

99

9.9
s = 10s. (3.1)

Nevertheless, Zeno provided a different perspective. He divided this chasing
process into a series of steps: During step 1, Achilles reaches the initial position
of the tortoise x1. Meanwhile the tortoise moved ahead to x2. During step 2,
Achilles reaches ∆t2 and the tortoise moved to x3, and so on. Since these steps
can be repeated forever, Zeno concluded that Achilles could never overtake the
tortoise.

Certainly, this conclusion should not make sense. Where is the flaw in Zeno’s
reasoning? Let us denote the time interval spent during the n-the step as ∆tn,
and then the total time spent should be,

T = ∆t1 +∆t2 +∆t3 + . . . . . . , (3.2)
The question is that even though there is an infinite number of terms in

this summation, does it really mean that the sum is infinite, or, could it still be
finite?

To see what really happens, we need to analyze more carefully each step.
During step one, the time spent is

∆t1 =
s1
va

= 9.9 s. (3.3)

Meanwhile the distance that the tortoise moved is

s2 = x2 − x1 = vt∆t1 = s1
vt
va

= 0.99 m (3.4)

Then the time interval ∆t2 spent during step 2 is

∆t2 =
s2
va

= ∆t1
vt
va

= 0.099 s, (3.5)

and the distance during step two that the tortoise moved is

s3 = x3 − x2 = vt∆t2 = 0.0099 m. (3.6)
By a similar reasoning, during the n-th step, Achilles takes the time ∆tn as

∆tn = ∆t1q
n−1 (3.7)

where q = vt/va.
In elementary mathematics, we only learned how to sum finite terms. For
example, we define
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Tn = ∆t1
(
1 + q + q2 + . . .+ qn

)
= ∆t1

1− qn

1− q

= 10× (1− (0.01)n) s. (3.8)

Hence, we arrive at

T1 = ∆t1 = 9.9 s
T2 = ∆t1 +∆t2 = 9.999 s
. . . (3.9)
Tn = ∆t1 +∆t2 + . . .+∆tn = 9.99 . . . 99 s

So far everything is elementary mathematics.
The breakthrough actually arises when n → ∞ is taken. In this case, literally
we have

T = ∆t1 +∆t2 + . . . .. (3.10)
which gives rise to T = 9.99 . . . ..s. Since each term ∆tn = ∆t1q

n−1, T is
expressed order by order of q. Since |q| < 1, the higher order the term is,
the smaller its contribution is. Hence, Eq. (3.10) is a perturbation theory. In
contrast, Eq. (3.1) is a non-pertubative theory.

Compared to Eq. (3.1), the natural question is: Should 9.999.... be taken
precisely as 10 , or not? How to understand 9.99 . . . ? Let us check:

10− T1 = 10− 9.9 = 0.1

10− T2 = 10− 9.9999 = 0.001

10− T3 = 10− 9.999999 = 0.00001 (3.11)

Even exhausting our life, we could only perform the above process at finite
steps. The great leap from elementary math to advanced one actually lies in
that we are willing to accept the difference between 9.999 . . .. and 10 is precisely
0 , i.e, no approximation. This is because the difference between 10 and 9.99 . . .
could be as small as you would like at any precision. Give me a precision ϵ, say,
10−2n, we have |10− Tm| < ϵ as long as m > n. Formally, it is denoted as

lim
n→∞

Tn = lim
n→∞

9.99 . . . 9 = 10 (3.12)

which should be viewed as a derivation, but rather as a definition.
Formally in the mathematics, there exists the following axiom: Any monotone
bounded sequence {an, n = 1, 2, . . . .} has a finite limit. Here we have
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T = lim
n→∞

Tn =
∆t1
1− q

lim
n→∞

(1− qn) =
∆t1
1− q

=
s1

va (1− vs/va)
=

s1
va − vs

(3.13)

Analytic continuation - let divergent series make sense
The convergence of the geometric series relies on the common ratio |q| < 1. If
|q| > 1, then the series diverges. Nevertheless, for physicists, a divergent series
still makes sense in many situations. The key is the interpretation.

If we switch the positions of Achilles and the tortoise, then q = va/vs > 1
and the geometric series of Eq. (3.10) diverges. Since the tortoise’s speed is
smaller than Achilles, there is no way for it to overtake Achilles. However, if we
literarily take Eq. (3.13) to see what happens, it becomes

T =
∆t1
1− q

=
s1

vs (1− va/vs)
= − s1

va − vs
(3.14)

Although each term in the series is positive, we arrive at a negative T . It
perfectly makes sense as long as we extrapolate the motions of Achilles and the
tortoise from the past to the future, actually they meet before the time zero.

What is really happening here? Mathematically, this is called analytic con-
tinuation explained as follows. For simplicity, we define the dimensionless time
f(q) = T/∆t1, and assume that f(q) should be analytic. Mathematically, there
exist rigorous definitions of analytic functions. But for the moment, we do
not need to be so rigorous. Roughly speaking, it just means that f(q) can be
expressed in terms of a regular form that we are used to.

In many complicated situations in the future we will face, in particular, in
quantum field theory, we have little understanding in what happens at q > 1.
But when |q| < 1, we can use the so called ”perturbation theory” pretty much
like Zeno’s analysis. f(q) is expanded order by order of q. Say, in Zeno’s
analysis, we arrive at,

f(q) =

∞∑
n=1

qn (3.15)

which converges at |q| < 1,

f(q) =
1

1− q
(3.16)

Actually, Eq. (3.16) has deeper meaning than the perturbation theory ex-
pression of Eq. (3.15). In many situations, the physical problem still has a
solution at |q| > 1, the result is just non-perturbative. Assuming that the so-
lution’s dependence on q is analytical, we can use the perturbation theory to
derive such an expression at |q| < 1, and it also works at |q| > 1.

General Physics I 2025, Lecture 3 | © Westlake University



This process is called analytic continuation, which is a remarkable method
to explore the unknown from known. The validity can be justified when the
uniqueness of analytic continuation can be proved. Indeed, this is the case
under certain conditions in mathematics, and you will learn it in the class of
”Mathematical Methods in Physics”.

§ Galileo’s study on the uniform acceleration
Galileo set up a general methodology for carrying on scientific research，which
releases us from endless abstract speculation and debate. Galileo turned to
focus on phenomena and build up relations among phenomena．Then people
can use mathematical modeling and reasoning to propose hypotheses．Based on
hypotheses on theory，people can make predictions to be tested by designing
experiments．The success or failure of a theory is reflected by whether it can
explain the pre-existing facts，and whether it has predictive power．

The difficulties that Galileo faced were enormous：
（1）experiment difficulty － lack of precision measurements of time
（3）Conceptual level － instant-velocity，acceleration，etc
（3）math level － pre-calculus time．

Laws are hidden in phenomena!

Free-fall motion is too fast to observe；hence, Galielo turned to study motion
on a slope to slow down the motion such that the observation is easier．

Galileo’s data
t 1 2 3 4 5 6 7 8 tick（time）
S 33 130 298 526 824 1192 1620 2104 punti
∆S 97 168 228 298 368 428 484

divided
by 33 1 2.9 5.1 6.9 9.0 11.2 13 14.6 ∝ t2

Considering possible experimental errors，Galileo observed the law that dur-
ing an integral small time interval，the distance traveled forms an arithematic
progression － idealization．
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1 : 3 : 5 : 7 : 9 : 11 : 13 : 15

Then the distance traveled from the starting time is

1, 1 + 3 = 4, 1 + 3 + 5 = 9, 1 + 3 + 5 + 7 = 16, · · ·
⇒ S(t) ∝ t2

What’s time? If no one asks me, I know what it is. If I wish to explain to
him who asks，I don’t know － Saint Augustine．

Then how to measure time？Use naturally existing peroids － year，menth，
day，etc．Or a better ones easier to control．－ the hour glass．But they cannot
provide the enough precision even for a free fall motion！

Galileo expressed that water clocks were used to measure time in his exper-
iments. But it’s hard to imagine that the necessary precision could be achieved
without prior knowledge of the motion. Physics history experts suggested that
he might clap to the beat to divide time into short equal intervals. He was a
musician!

Time-unit: Comité international des poids et mesures (CIPM) 2018: The
second is defined by taking the fixed numerical value of the Cs frequency,
∆VCS , the unperturbated ground state hyperfine transition frequency of the
133Cs atom, to be 9, 192, 631, 770 when expressed in the unit Hz, which is equal
to s−1.
(temperature T = 0 K, average sea level, at rest, zero magnetic field).

Question: is this the most precise time in 2025?

Conceptual difficulty － instantaneous velocity
At Galileo‘s time，people had difficulty to define instantaneons velocity clearly．
For example，consider the reverse motion of free fall，－ the vertical projectile
motion．We know that the motion is slowed down as the projectile reaches the
peak．

Let us divide the motion into n parts equally，and each step is h/n ．As
the projectile moves upward，finally v → 0 ．It means it will take projectile
more and more time to complete each step．Since we can divide the process into
infinitely many steps，it ＇ s not clear whether the projectile could complete
the motion in a finite period of time．
Or if we reverse the motion and consider the free fall，it means that if the falling
object starts from velocity zero，how could it start to fall at all！

Of course，we do know from our daily observation，both the projectile and
the falling object will complete the motion．The ultimate solution is actually
not simple，which rely on our concept of infinitismall quantities － the Sum of
infinite number of time intervals can still converge to a finite amount of time
period．－ pretty much similar to the Zeno ＇ s paradox．
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Galleo’s response is that an object passes a point instantaneously．It occurs
at a particular time“t”，but it does not take an interval of time．Using modern
language，it means

v(t) = lim
∆t→0

S(t+∆t)− S(t)

∆t
=

dS(t)

dt

or ∆t = ∆S
v(t) → 0 as ∆S → 0 ．

Series expansion － frequently used formula

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·

ln(1− x) = −x− x2

2
− x3

3
− x4

4
+ · · ·

Example of derivative

f(x) = ex ⇒ df

dx
= lim

∆x→0

ex+∆x − ex

∆x
= ex ln∆x→0

e∆x − 1

∆x
= ex

f(x) = ax = ex ln a ⇒ df

dx
= ln aex ln a = ln a · ax

f(x) = xn ⇒ df

dx
= lim

∆x→0

(x+∆x)n − xn

∆x
=

xn
(
1 + ∆x

x

)n − xn

∆x

=
xn
(
1 + n∆x

x

)
− xn

∆x
= nxn−1

f(x) = lnx df

dx
= lim

∆x→0

ln(x+∆x)− lnx
∆x

= lim
∆x→0

x
(
1 + ∆x

x

)
− lnx

∆x
=

1

x
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Velocity v.s. distance
distance (displacement)

Set S(t = 0) = 0.

S(t0) = Σiv(ti)∆t ⇒
∫ t0

0

dtv(t) = S(t0)

S (t0 +∆t)− S (t0) = ∆tV (t0) ⇒ lim
∆t

S (t0 +∆t)− S (t0)

∆t
= V (t0)

dS(t)

dt
= V (t)

Newton-Leibnitz formula:∫ b

a

f ′(x)dx = f(b)− f(a)

t2 − t1 = Σi
∆S(ti)

v
=

∫ s2

s1

dS

v
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Acceleration
a(t) = dv(t)

dt = lim∆t→0
v(t+∆t)−v(t)

∆t = d2S(t)
dt2

= lim∆t→0
S(t+∆t)−2S(t)+S(t−∆t)

(∆t)2

v (t2)− v(t) =
∫ t2
t1

a(t)dt

Motion with a constant acceleration

free fall： S(t) = 1
2gt

2 with
{

S(t = 0) = 0
v(t = 0) = 0

v(t) = ds(t)
dt = gt

a = dv(t)
dt = g

}
or we consider a motion of constant acceleration

d2s

dt2
= g → ds(t)

dt
= gt+ c1 → S(t) =

1

2
gt2 + c1t+ c2

c1 and c2 are constants determined by the initial conditions．
if S(t = 0) = 0, v(t = 0) = 0 ⇒ C1 = C2 = 0 ．

displacement as a vector/velocity is also a vector
1d case：unification of the motion of ascending and descending parts．


d2z(t)
dt2 = −g

dz
dt

∣∣
t=0

= v0
z(t = 0) = 0
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⇒ z(t) = −1

2
gt2 + v0t

= −g

2

(
t− v0

g

)2

+
v20
2g

v(t) = v0 − gt

Motion in high-dimensions
We use the vector notation to represent displacement，r⃗ ，velocity v⃗ ，and
acceleration a⃗．The corresponding concepts can be generalized from the straight-
line motions

v⃗ =
dr⃗

dt
= lim

∆t→0

r⃗(t+∆t)− r⃗(t)

∆t

a⃗ =
dv⃗

dt
= lim

∆t→0

v⃗(t+∆t)− v⃗(t)

∆t

= lim
∆t→0

r⃗(t+∆t) + r⃗(t−∆t)− 2r⃗(t)

(∆t)2

＊ circular motion with uniform speed, but it has the centripedal accel-
eration!
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＊ We can write down the definition in terms of components:

vx =
dx

dt
, ax =

dvx
dt

=
d2x

dt2

vy =
dy

dt
, ay =

dvy
dt

=
d2y

dt2

vz =
dz

dt
, az =

dvz
dt

=
d2z

dt2

v =
√
v2x + v2y + v2z a =

√
a2x + a2y + a2z

Examples
（1）uniform speed circular motion

{
x = r cosωt
y = r sinωt ⇒

{
vx = −ωr sinωt
vy = ωr cosωt ⇒

{
ax = −ω2r cosωt
ay = −ω2r sinωt
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⇒ a⃗ = −ω2r⃗

（2）Projectile motion

vx = v cos θ, vy = v sin θ

dx

dt
= vx,

dy

dt
= vy − gt

⇒ x = vxt+ C1,

y = vyt− 1
2gt

2 + C2

with x(0) = 0, y(0) = 0

⇒ C1 = 0, C2 = 0

⇒ x = v cos θ t,
y = v sin θ t− 1

2gt
2

Equation of trajectory: y = x tan θ − g

2v2 cos2 θ x2

= − g

2v2 cos2 θ

(
x− v2 sin 2θ

2g

)2

+
(v sin θ)2

2g

• Range of shooting： sin 2θ
g v2

• Shooting altitude： (v sin θ)2

2g
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Motion in polar coordinates

êr = x̂ cos θ + ŷ sin θ, êθ = −x̂ sin θ + ŷ cos θ.

dêr
dθ

= −x̂ sin θ + ŷ cos θ,

= êθ,

dêθ
dθ

= −x̂ cos θ − ŷ sin θ,

= −(x̂ cos θ + ŷ sin θ)
= −êr.

dêr
dt

=
dêr
dθ

dθ

dt
= êθ

dθ

dt
,

dêθ
dt

=
dêθ
dθ

dθ

dt
= −êr

dθ

dt
.

such that,

r⃗(t) = r(t) êr(t),

v⃗(t)
dr⃗

dt
=

d

dt

(
r êr
)
=

dr

dt
êr + r

dθ

dt
êθ.
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a⃗(r) =
dv⃗

dt
=

dr

dt

dêr
dt

+ êr
d2r

dt2

+
dêθ
dt

r
dθ

dt
+ êθ

dr

dt

dθ

dt
+ êθr

d2θ

dt

=

(
2
dr

dt

dθ

dt
+ r

d2θ

dt2

)
êθ +

(
d2r

dt2
− r

(
dθ

dt

)2
)
êr

=

[
d2r

dt2
− r

(
dθ

dt

)2
]
êr +

1

r

d

dt

(
r2

dθ

dt

)
êθ

For circular motion with fixed r,

⇒ a⃗ = −r

(
dθ

dt

)2

êr + r
d2θ

dt2
êθ

First term is centripeddal acceleration, and second term is the acceleration
along tangential direction

Acceleration in the tangent direction and the normal direction
Consider a motion along a curve.
At r⃗1, its velocity is v⃗1,
At r⃗2, its velocity is v⃗2.
The angle difference between −→v1 and −→v2 is θ.
⇒ ∆v⃗ = v⃗2 − v⃗1 = ∆v∥êt + ∆v⊥ên

⇒ a⃗ = lim∆t→0
∆v⃗
∆t = dv

dt êt − v dθ
dt ên
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we can appoximate the trajectivy from −→r1 to −→r2 as a circle with a

radius of R, where 1/R is the curvature.
Then,

dθ

dt
=

V

R

⇒ a⃗ =
dv

dt
êt−

v2

R
ên

tangential normal
acceleration acceleration
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