Lecture 12 Appendix: Conic Sections (圆锥曲线)

The **conic sections** (圆锥曲线) are the family of curves obtained by intersecting a plane with a double-napped right circular cone (双圆锥面). Their geometric shapes depend solely on the angle between the cutting plane and the cone's axis (轴线).

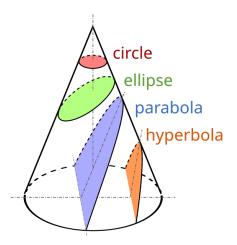


Figure 1: Conic sections formed by slicing a double-napped cone at different angles (圆锥体被平面斜切的几何示意).

§ 1. Definition (定义)

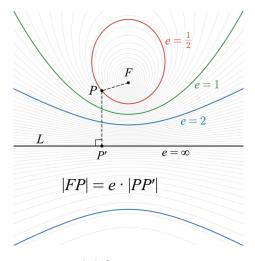


Figure 2: Conic sections general definition.

A conic section is the **locus of all points** (点的轨迹) P such that the ratio of its distance to a fixed point F (called the **focus 焦点**) and to a fixed line L

(called the **directrix 准线**) is constant:

$$\frac{FP}{PP'} = e.$$

The constant e is called the **eccentricity** (离心率).

- e < 1: ellipse(椭圆);
- e = 1: parabola (抛物线);
- e > 1: hyperbola (双曲线).

In Cartesian coordinates (直角坐标系) the general quadratic equation of a conic

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,$$

where A, B, C, D, E, F are constants. The discriminant $\Delta = B^2 - 4AC$ determines the type of conic:

$$\begin{cases} \Delta < 0 & \text{ellipse or circle (椭圆或圆)} \ , \\ \Delta = 0 & \text{parabola (抛物线)} \ , \\ \Delta > 0 & \text{hyperbola (双曲线)} \ . \end{cases}$$

§ 2. Polar Equation (极坐标方程)

When the focus is placed at the origin (原点) and the directrix is perpendicular to the polar axis (极轴), the conic can be expressed in polar coordinates (极 坐标系)as:

$$r = \frac{c}{1 + e\cos\theta},$$

where c is called the **semi-latus rectum** (半通径), a constant determining the scale of the curve.

- Ellipse (e < 1): $r = \frac{c}{1 + e \cos \theta}$;
- Parabola (e=1): $r = \frac{c}{1 + \cos \theta}$;
- Hyperbola (e > 1): $r = \frac{c}{1 + e \cos \theta}$.

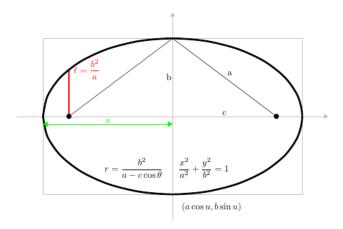


Figure 3: Conic sections in polar coordinates(极坐标下的圆锥曲线示意).

§ 3. Generation by Plane-Cone Intersection (由圆锥体切割 生成)

Consider a right circular cone (直圆锥) with half-angle α . When a plane cuts the cone at an angle β relative to its axis:

- $\beta > \alpha$: ellipse (椭圆);
- $\beta = \alpha$: parabola (抛物线);
- $\beta < \alpha$: hyperbola (双曲线).

Thus all conic sections can be viewed as plane-cone intersections, and their eccentricity depends on these angles:

$$e = \frac{\cos \beta}{\cos \alpha}.$$