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Lect 12: Gravity & Plenary Motion

• CM and relative coordinates: reduced mass


F⃗1

(
|r⃗1 − r⃗2|

)
= −F⃗2

(
|r⃗1 − r⃗2|

)
m1

¨⃗r1 = F⃗1

m2
¨⃗r2 = F⃗2

(1)

F⃗1 + F⃗2 = 0⇒ ¨⃗
R = 0 with R⃗ =

m1r⃗1 +m2r⃗2
m1 +m2

← center of mass coordinate

F⃗1

m1
− F⃗2

m2
⇒ ¨⃗r =

(
1

m1
+

1

m2

)
F⃗1,where r⃗ = r⃗1 − r⃗2 is the relative coordinate.

µ =
m1m2

m1 +m2
← reduced mass, µ < m1,m2.

• µ¨⃗r = F⃗1(|r|), separation of center-of-mass motion and relative motion.

• For the relative motion, it is reduced to a single mass point moving in a
central force field F⃗1(|r|), with mass replaced by µ.

• T = 1
2m1

˙⃗r21 +
1
2m2

˙⃗r22

=
1

2
m1

[
˙⃗
R2 +

(m2

M

)2
˙⃗r 2 + 2

˙⃗
R · ˙⃗r m2

M

]
+

1

2
m2

[
˙⃗
R2 +

(m1

M

)2
˙⃗r 2 − 2

˙⃗
R · ˙⃗r m1

M

]
=

1

2
M

˙⃗
R2 +

1

2
µ ˙⃗r 2,

with M = m1 +m2 and r⃗1 = R⃗+ m2

M r⃗, r⃗2 = R⃗− m1

M r⃗.

• E = T + U =
1

2
M

˙⃗
R2 +

1

2
µ ˙⃗r 2 + U(r)︸ ︷︷ ︸

relative motion
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• L⃗CM in the CM frame, i.e., the frame in which R⃗ is at rest.

L⃗CM =
(
r⃗1 − R⃗

)
×m1

(
˙⃗r1 −

˙⃗
R
)
+
(
r⃗2 − R⃗

)
×m2

(
˙⃗r2 −

˙⃗
R
)

=
m2

M
r⃗ ×m1

m2

M
˙⃗r +

(
−m1

M
r⃗
)
×m2

(
−m1

M

)
˙⃗r

=
m1m2

M

(
m1 +m2

M

)
r⃗ × ˙⃗r = µ r⃗ × ˙⃗r.

• Reduction to 1D motion

We have reduced the two-body problem into a single-body problem in 3D.
Now further reduce it to 2D and to 1D motion. In the CM frame, L⃗CM is
conserved.

The force passes the origin → no torque.
(Angular momentum conservation due to spatial isotropy).

d

dt
L⃗CM = 0⇒ L⃗CM ≡ const vector

L⃗CM is perpendicular to the orbital plane ⇒ the motion is coplanar,
e.g., in the xy-plane, and L⃗CM = l ẑ.

Then use the equation of motion in polar coordinates: Fr = µ
(
r̈ − rϕ̇2

)
Fϕ = µ(rϕ̈+ 2ṙϕ̇) =

1

r
µ

d

dt

(
r2ϕ̇

) (2)
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Fϕ = 0⇒ d

dt

[
µr2ϕ̇

]
= 0← This is Kepler’s 2nd law.

Actually

L⃗CM = l ẑ = µrr̂ × v⃗ = µrr̂ ×
[
ṙ r̂ + r

dr̂

dϕ
ϕ̇

]
= µr2ϕ̇ [r̂ × ϕ̂] = µr2ϕ̇ ẑ

⇒ µr2ϕ̇ = l⇒ ϕ̇ =
l

µr2
⇒ rϕ̇2 =

l2

µ2r3

⇒ Fr = µr̈ − l2

µr3
⇒ µr̈ = Fr +

l2

µr3
→ Effective 1D motion

Similarly, we can apply previous knowledge of 1D motion and derive:

E =
1

2
µṙ2 + U(r) +

l2

2µr2︸ ︷︷ ︸
Ueff (r)

, U(r) = −
∫ r

r0

Fr dr.

The effect of angular momentum is included by
l2

2µr2
≡ Vcf(r).

For Kepler problem

U(r) = −Gm1m2

r
= −γ

r
with γ = Gm1m2.

Ueff(r) = −γ
r + l2

2µr2

(1) E < 0: bound orbital; at Emin the radial motion is at rest → circular mo-
tion.
(2) E = 0: unbounded orbitals, parabolic.
(3) E > 0: unbounded orbitals, hyperbolic.
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What’s special about 1/r2 force field? — closed orbit!

(1) The period of radial motion (bounce) is the same as the angular period
ϕ : 0 ∼ 360◦.

(2) For a general central force, the orbit may not be closed! The ellipse may
precess. The angular period isn’t the same as the radial period.
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Solve the equation of orbit
µr̈ = Fr +

l2

µr3

ϕ̇ =
l

µr2

(3)

Solve r(ϕ). Define u = 1/r and replace
d

dt
by ϕ̇

d

dϕ
:

d

dt
=

dϕ

dt

d

dϕ
=

l

µr2
d

dϕ
=

lu2

µ

d

dϕ
, ṙ = − l

µ

du

dϕ
, r̈ = − l2u2

µ2

d2u

dϕ2
.

Thus

− l2u2

µ2

d2u

dϕ2
=

1

µ
Fr +

l2

µ2
u3 ⇒ d2u

dϕ2
= −u(ϕ)− µ

l2u2
Fr.

Plug in Fr = − γ

r2
= −γu2:

d2u

dϕ2
= −u+

µγ

l2
← inhomogeneous 2nd-order linear differential equation.

Solution: u = A cos(ϕ− δ) +
µγ

l2
. Choosing the x-axis along δ (major axis),

1

r
=

µγ

l2
[1 + e cosϕ], e =

Al2

µγ
,

so

r(ϕ) =
c

1 + e cosϕ
, c =

l2

µγ
.

§ Conic curves/sections
p: focal parameter; e: eccentricity.
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e =
r

d
, d = p− r cosϕ ⇒ ed = ep− er cosϕ = r

⇒ r = ep
1+e cosϕ .

0 < e < 1 — ellipse; e = 1 — parabola; e > 1 — hyperbola.

Change to Cartesian coordinates:

r = ep− er cosϕ (since r cosϕ = x), x2 + y2 = (ep)2 + e2x2 − 2e2px,

(1− e2)

[
x+

e2p

1− e2

]2
+ y2 =

e2p2

1− e2
.

For 0 < e < 1, (
x+

e2p

1− e2

)2

(
ep

1− e2

)2 +
y2(
ep√
1− e2

)2 = 1

⇒

a =
c

1− e2
,

b =
c√

1− e2
,


c = ep =

l2

µγ
,

d =
e2p

1− e2
= ea,


e =

Al2

µγ
,

p =
1

A
.
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Express the orbit using conserved quantities.

• Energy: using the effective potential

Ueff(r) = −
γ

r
+

l2

2µr2
, rmin =

c

1 + e
=

l2

µγ(1 + e)
.

At rmin,

E = − γ

rmin
+

l2

2µr2min

=
γ2µ

2l2
(e2 − 1) =

−γ
2a

,

• The semi-major axis a = γ
−2E is determined only by the energy.

• The semi-latus rectum (“cord length”) c =
l2

µγ
is determined only by the

angular momentum.

• a =
c

1− e2
⇒ 1− e2 =

c

a
=

l2

µγ
· −2E

γ
⇒ e =

√
1 +

2l2E

µγ2
.

b2

a2
= 1− e2 ⇒ b2

a
= (1− e2)a = c⇒ b =

√
l2

−2µE
.
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Kepler’s 3rd law

dA⃗ =
1

2
r⃗ × dr⃗ ⇒ dA

dt
=

1

2

l

µ
.

Total area A = πab⇒ τ =
A

dA/dt
=

2πab µ

l
, hence

τ2 =
4π2a2a2(1− e2)µ2

l2
=

4π2a3c µ2

l2
=

4π2a3µ

γ
(use c =

l2

µγ
),

⇒ τ2

a3
=

4π2µ

γ
=

4π2

Gmsun
, γ = Gm1m2 = Gµ(msun +mearth) ≈ Gµmsun.

Orbits:

Unbounded orbits: r(ϕ) =
c

1 + e cosϕ
.

(1) e=1: ⇒ r(ϕ = π)→ +∞, y2 = −2c
[
x− c

2

]
.

(2) e > 1: (
x− ec

e2 − 1

)2

(
c

e2 − 1

)2 − y2(
c√

e2 − 1

)2 = 1,

p =
c

e
, perihelion

c

1 + e
, a =

c

e2 − 1
, center

[
ec

e2 − 1
, 0

]
.
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Define ϕ0 = cos−1(1/e), r is finite when −ϕ′ < ϕ < ϕ′, (ϕ′ = π−cos−1(1/e)).

Changing orbit

Change from an elliptic orbit with (c1, e1) to another with (c2, e2)(tangent at
perigee):

c1
1 + e1

=
c2

1 + e2
, l2 = λ l1.

Since c =
l2

µγ
, ⇒ c2 = λ2c1,

⇒ 1 + e2
1 + e1

=
c2
c1

= λ2 ⇒ e2 = λ2e1 + (λ2 − 1).

1. If λ > 1, then e2 > e1; same perigee, orbit becomes larger and more ellip-
tical. At e2 ≥ 1, the orbit becomes open → parabola/hyperbola.

2. If λ < 1, then e2 < e1; the new orbit becomes smaller and less elliptical.
At e2 = 0, the orbit becomes circular. How about e2 < 0? then the

equation of orbit changes to r(ϕ) =
1

1− e2 cosϕ
the perigee and apogee

switch.
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Changing between circular orbits.

Orbit 1: e1 = 0, c1 = R1. Orbit 2: eccentricity e2.r =
c2

1 + e2 cosϕ
,⇒ c2

1 + e2
=

λ2R1

1 + e2
= R1 ⇒ e2 = λ2 − 1,

c2 = λ2R1.

Apogee:

c2
1− e2

= R3 ⇒ c2 = R3(1− e2) ⇒ λ2R1 = R3(2− λ2) ⇒ λ2 =
2R3

R1 +R3
.

Second thrust: r = C3 = R3, e3 = 0, C3 = λ′2C2

⇒ λ′2 =
C3

C2
=

R3

λ2R1
=

R1 +R3

2R1
.

Final and initial speeds:{
v3 = v2,appλ

′,

λv1 = v2,peri,
and v2,appR3 = v2,periR1,

⇒ v3 = λ′λ
R1

R3
v1 =

√
R1

R3
v1.
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Cosmic velocities
Newton’s solution to Kepler’s problem paved the way for the space age, starting
from the launch of Sputnik 1 in 1957. Below we explain the calculation of the
three cosmic velocities. The first astronaut was Yuri Gagarin (1934–1968).

1st cosmic velocity — the orbiting velocity

The first cosmic velocity means that an object does not fall on the ground but
orbits around the Earth.

m
v21
R

=
GMm

R2

v21 =
GM

R

Since g = GM/R2,
v1 =

√
Rg.

The period T is

T =
2πR

v
= 2π

√
R

g
.

Plugging in R = 6400 km and g ≈ 10m/s2,

v1 ≈ 8 km/s, T ≈ 5024 s ≈ 84min.

The total energy of an elliptic orbit is determined by the semi-major axis a as
E = −GMm

2a . The angular momentum is determined by the semi-latus rectum
h as l = m

√
GMh.
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Escaping velocities
The total energy:

E = Ek + Ep =
1

2
mv2 − GMm

r
= −GMm

2a
.

The angular momentum:

L⃗ = l ẑ = mr⃗ × v⃗ = m
√
GMh = mh

√
GM

h
.

For all orbits with the same energy E, they share the same semi-major axis
a, but the orbital angular momentum differs; the circular orbit has the largest
l. For all orbits with the same h, they share the same l, but their energies are
different. Since l = mrv sin θ, taking θ = π/2 minimizes v for fixed l, leading to
minimal energy.

2nd cosmic velocity
The second cosmic velocity v2 is the minimal velocity for escaping from Earth:

1

2
mv22 −

GMm

R
= 0 ⇒ v2 =

√
2GM

R
=
√
2 v1 ≈ 11.2 km/s.

At v =
√
2GM/R the orbit is parabolic with E = 0; for larger v it is

hyperbolic with E > 0.

3rd cosmic velocity
The third cosmic velocity v3 is the minimal launch speed (from Earth) to escape
the solar system. Earth’s orbital speed (Earth–Sun distance Re = 1.5× 108 km,
period 1 year):

v0 =
2πRe

T
≈ 30 km/s.

Solar escape speed at Earth’s orbit:

ves =
√
2 v0 ≈ 42.4 km/s.

Nevertheless, the 3rd cosmic velocity is the object velocity when launched
with respect to the earth surface, which can take the advantage of the earth
orbiting velocity. Let us consider three steps of launching a rocket to fly away
from the earth. During these steps, the distance of the rocket with respect to the
Sun changes very little, hence, its potential energy due to the gravity from the
Sun can be approximately as a constant. We only count the kinetic energies of
the rocket, the earth, the rocket-earth potential energy, and the chemical energy
of the fuel. The first stage is before the launch. The earth and the rocket have
the same velocity v0, and the energy stored in the chemical fuel Ec. The total
energy is:
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E1 =
1

2
(m+M)v20 + Ech −

GMm

R
,

The 2nd stage is that the rocket just acquires the 3rd cosmic velocity v3 by
burning out the chemical fuel, but is still very close to the Earth’s surface.
Then

E2 =
m

2
(v0 + v3)

2 +
M

2
(v0 +∆v)2 − GMm

R
,

where ∆v is the recoil of the earth. According to momentum conservation, we
have

(m+M)v0 = m(v0 + v3) +M(v0 +∆v)⇒ mv3 +M∆v = 0.

Hence
E2 =

1

2
(m+M)v20 +

m

2
v23 +

M

2
∆v2 − GMm

R
.

Energy conservation E1 = E2 gives

Ech =
m

2

(
1 +

m

M

)
v23 ≈

m

2
v23 .

Final stage (leaving with
√
2v0 relative to Sun):

E3 =
1

2
m(
√
2v0)

2 +
M

2
(v0 +∆v′)2,

where ∆v′ is the recoil of the earth at the end of the 3rd stage. According to
the momentum conservation,

(m+M)v0 = m
√
2 v0 +M(v0 +∆v′)⇒M∆v′ = −m(

√
2− 1)v0.

Thus
E3 =

m

2
(
√
2v0)

2 +
M

2
v20 −m(

√
2− 1)v20 .

Energy conservation E1 = E3 yields

v23 = v20(
√
2− 1)2 + v22 .

With v0 = 30 km/s and v2 = 11.2 km/s,

v3 =
√
302 × 0.4142 + 11.22 = 16.7 km/s.
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