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Lect 12: Gravity & Plenary Motion
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e CM and relative coordinates: reduced mass

F (1™ — 7 ) = —Fy(|ry — 7))
miry = F (1)
maTy = Fy

-, - = L. o= MmaTL + maTt .
Fi + F5,=0= R=0with R = AT T2 center of mass coordinate
mi + mo

I 1 1)\ =
! 2 o= ( + > Fy,where ¥ = 7| — 75 is the relative coordinate.

mi ma

mimsa
———— < reduced mass, pu < mqy,mo.

'uzml—f—mg

o ui = Fi(|r|), separation of center-of-mass motion and relative motion.
e For the relative motion, it is reduced to a single mass point moving in a
central force field F;(|r|), with mass replaced by u.
o ' = %mlf'f + %mgfg
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° ECM in the CM frame, i.e., the frame in which R is at rest.

ECM:(’F‘l—R’)Xm1<7'?1—§)+(42—é>Xm2<7%2—é)
ma ma -, my miy\ -
:ermlﬁr—l—(—ﬁ X Mo —M)r
— Mamz (m1+m2>FXF:uFXF
M M

e Reduction to 1D motion

We have reduced the two-body problem into a single-body problem in 3D.
Now further reduce it to 2D and to 1D motion. In the CM frame, ECM is
conserved.

The force passes the origin — no torque.

(Angular momentum conservation due to spatial isotropy).

> B

Ir

%ECM =0= ECM = const vector

ECM is perpendicular to the orbital plane = the motion is coplanar,
e.g., in the xy-plane, and Loy =1 2.

Then use the equation of motion in polar coordinates:
F.=u (r — r(;’.)Q)
Fy = n(rd +20d) = L (124)
= u(r re) = —p—(r
¢ = H r K dt
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d .
Fp=0= T [urzd)] = 0 < This is Kepler’s 2nd law.
Actually

. di ) .
Lov =15 = urf x 7 = ur x [M+rd;¢] = w2 i x ¢ = ur?é s

2

. . l .
:>/M2¢:l:>¢:—2:>r¢2: 53
ur w2r

2 12
= F, =i — — = ui = F, + —; — Effective 1D motion
pr® pr?

Similarly, we can apply previous knowledge of 1D motion and derive:

1 . l2 T
E:§/“" —&-U(r)—i—w, U(r):—/TOFrdr.
Uetr (7)
2
The effect of angular momentum is included by o2 = et (7).
r

For Kepler problem

G
U(r) = _omama = —% with v = Gmims.

(1) E < 0: bound orbital; at Ey,, the radial motion is at rest — circular mo-
tion.

(2) E = 0: unbounded orbitals, parabolic.

(3) E > 0: unbounded orbitals, hyperbolic.
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What’s special about 1/r? force field? — closed orbit!

(1) The period of radial motion (bounce) is the same as the angular period
b0 ~ 360°.

(2) For a general central force, the orbit may not be closed! The ellipse may
precess. The angular period isn’t the same as the radial period.
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Solve the equation of orbit
2

wr=Eet o
oo " (3)
¢=W2
Solve r(¢). Define u = 1/r and repl ibqbi~
olve r . enne u = T a epacedt Yy d¢
d d¢ d I d Ww?d Ldu . 1Pu? d%u

At dtde  w?d wde | pde | 2 dg?
Thus
Pu?d?u 1 12 d?u 1
Y _Cpy s Lo ) - L F.
2 A2 T+M2u d? u() 22T

Plug in F,. = —12 = —yu?:
r

d2
d7:; =—u+ % < inhomogeneous 2nd-order linear differential equation.

Y

Solution: u = Acos(¢ — d) + Zh Choosing the z-axis along ¢ (major axis),
1wy Al?
—=—=[l+ecos¢], e=—,
ro 2 Y
S0 2
¢
7(¢)

=) c=—.
1+ ecos¢ Wy

§ Conic curves/sections

p: focal parameter; e: eccentricity.

b
-
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r
e:E, d=p—rcos¢p = ed=ep—ercosp=r

— €p
=|r= l+ecoso [

0 <e<1—ellipse; e=1— parabola; e > 1 — hyperbola.

Change to Cartesian coordinates:

-
-

r=ep—ercosd (since rcosg =), 2+ y* = (ep)* + e*x? — 2e?pz,

2 2 2,2
(162)|:$+16p2:| +y2:167p2.
—e —e
For0<e<1,
e2p \?
<x+1_62) Y2 _
ep \’ ep 2
1 —e2 V1—e2
a c c—epzﬁ e—Al2
=9, 1—e?’ , M ;1w7
= 7, P _ ——
/1 — e2 d71_627ea, P=7
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aphdwn b

Express the orbit using conserved quantities.

e Energy: using the effective potential

2 c 2
UCH(T):_%+211/7, Tmin = -

At Tmin,
g S -
E—— L Ly
Tmin + 2ur? 212 (e )

min

2a’

e The semi-major axis a = —J% is determined only by the energy.

12
e The semi-latus rectum (“cord length”) ¢ = — is determined only by the
By

angular momentum.

c , ¢ 12 —2F 21°FE
® a 2@1_6 = —-=— —— = e = 1 3
I—e wy Y
b2 ) b2 9 12
?:176 =—=(1-¢eY)a=c=b= —ouE
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Kepler’s 3rd law

S 1 dA 11

dA = —Fxdi= — = ——.

2 dt 2u

A 2mab
Total areaA:wab:T:dT/dt:y,hence
2,2 201 _ ,2Y,2 2,3, 2 2.3 2
7_2:47raa(1 e)M:47racu:47rau (usec:l—),

12 12 ¥ y

y Y= Gmimg = G,U(msun + mearth) ~ G,umsun-

Orbits:
. C
Unbounded orbits: T(¢) = m

(=) (=)

c c
p = —, perihelion
e 1

¢ cente e 0
, a=———,center | ——, 0] .
+e e2 -1 e2 -1
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Define ¢g = cos™!(1/e), r is finite when —¢/ < ¢ < ¢/, (¢/ = m—cos~1(1/e)).

Changing orbit

Change from an elliptic orbit with (¢1,e1) to another with (cg, e2)(tangent at

perigee): . .

1 2
= la =M.
1+€1 1+627 2 !

12
Since c = —, = ¢3 = X2y,
ey

1+€2 Co

1+e; _Cl

=\ = €y = )\261 + ()\2 — 1)

1. If A > 1, then ey > e;; same perigee, orbit becomes larger and more ellip-
tical. At ey > 1, the orbit becomes open — parabola/hyperbola.

2. If A < 1, then ey < eg; the new orbit becomes smaller and less elliptical.
At es = 0, the orbit becomes circular. How about e; < 0?7 then the

1
equation of orbit changes to r(¢) = —————— the perigee and apogee

1 —eycoso
switch.
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Changing between circular orbits.

Orbit 1: e; =0, ¢c; = Ry. Orbit 2: eccentricity es.

C2 C2 >\2R1
= = = =Ri=e=X-1
" 1+eycosgp’ 14es 14e 1= € ’
02=>\2R1.
Apogee:
C2 2 2 9 2R3
=R = = R3(1 — = MR =R32—-)) = = ———.
=g = Fs = 2=Ri(l-e) 1 = Rs( ) Rt R

Second thrust: r=C3 = Rs, e3 =0, C3 = XN2C,

Ci Rs Ry +R
)\12 _ 73 _ 3 _ 1 3 ]
= C,  NR, 2R,

Final and initial speeds:

!
{UB = v2,app)‘ )

and 'UQ,appR3 = U2,periR17
)\Ul = V2,peri;

Ry Ry
= vy = Nty =) =
v Rs o Rs

V1.
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Cosmic velocities

Newton’s solution to Kepler’s problem paved the way for the space age, starting
from the launch of Sputnik 1 in 1957. Below we explain the calculation of the
three cosmic velocities. The first astronaut was Yuri Gagarin (1934-1968).

1st cosmic velocity — the orbiting velocity

The first cosmic velocity means that an object does not fall on the ground but
orbits around the Earth.

mv% _ GMm
R R?
=g

Since g = GM/R?,
v = \/Rg.
The period T is
2
= LR =27 E
v g

Plugging in R = 6400km and g ~ 10m/s?

T

v1 ~8km/s, T =~ 5024s~ 84min.

The total energy of an elliptic orbit is determined by the semi-major axis a as

E = —G% ™ The angular momentum is determined by the semi-latus rectum

hasl=mvGMh.
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Escaping velocities
The total energy:

1 M M
E:EkJrE:fvafG m:—G m'
2 T 2a

The angular momentum:

L=l2=mFxid=m GMh:mm/GTM.

For all orbits with the same energy FE, they share the same semi-major axis
a, but the orbital angular momentum differs; the circular orbit has the largest
l. For all orbits with the same h, they share the same [, but their energies are
different. Since [ = mrvsin 6, taking § = /2 minimizes v for fixed [, leading to
minimal energy.

2nd cosmic velocity

The second cosmic velocity ve is the minimal velocity for escaping from Earth:

1 5 GMm

5mv2 — R

2GM
=0 = vy = T

=V2v; ~ 11.2km/s.
At v = /2GM/R the orbit is parabolic with £ = 0; for larger v it is
hyperbolic with E > 0.

3rd cosmic velocity

The third cosmic velocity v is the minimal launch speed (from Earth) to escape
the solar system. Earth’s orbital speed (Earth-Sun distance R, = 1.5 x 108 km,
period 1 year):

21 R,

M ~ 30 km/s.

Vo = T

Solar escape speed at Earth’s orbit:
Ves = V200 ~ 42.4km/s.

Nevertheless, the 3rd cosmic velocity is the object velocity when launched
with respect to the earth surface, which can take the advantage of the earth
orbiting velocity. Let us consider three steps of launching a rocket to fly away
from the earth. During these steps, the distance of the rocket with respect to the
Sun changes very little, hence, its potential energy due to the gravity from the
Sun can be approximately as a constant. We only count the kinetic energies of
the rocket, the earth, the rocket-earth potential energy, and the chemical energy
of the fuel. The first stage is before the launch. The earth and the rocket have
the same velocity vy, and the energy stored in the chemical fuel E.. The total
energy is:
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1 aM
By = 5 (m+ M)o§ + By - Tm’

The 2nd stage is that the rocket just acquires the 3rd cosmic velocity vs by
burning out the chemical fuel, but is still very close to the Earth’s surface.

Then M oM
= %(UO + 1)3)2 + 7(1}0 =+ AU)Q — Tm,

where Av is the recoil of the earth. According to momentum conservation, we
have

(m 4+ M)vg = m(vo + v3) + M (vo + Av) = mvs + MAv = 0.
Hence

GMm

1 M
Eng(m—i—M)vg—i—mvg—i—?Aﬁ— 7

2 2
Energy conservation Fy = FE5 gives

m m m
Ech:?(l—i_ﬂ) ’Ug%;’l}g.

Final stage (leaving with v/2vy relative to Sun):
1 M
E3 = im(\/i’l)())2 + 7(’00 + A’Ul)g,

where Av’ is the recoil of the earth at the end of the 3rd stage. According to
the momentum conservation,

(m + M)vg = mV2wvy + M(vg + Av') = MAY = —m(vV2 — 1)vg.

Thus M
E; = %(\@vo)z + ?vg —m(V2 - 1)vd.

Energy conservation Fq = Ej3 yields
v2 = v3(V2 —1)% + 0.

With vg = 30km/s and vy = 11.2km/s,

v3 = /302 x 0.4142 + 11.22 = 16.7km/s.
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